【題目】已知函數(shù)f(x)=bax(a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過點A(1,8),B(3,32)
(1)試求a,b的值;
(2)若不等式( x+( x﹣m≥0在x∈(﹣∞,1]時恒成立,求實數(shù)m的取值范圍.

【答案】
(1)解:∵函數(shù)f(x)=bax,(其中a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過點A(1,8),B(3,32),

解得a=2,b=4,

∴f(x)=4(2)x=2x+2


(2)解:設g(x)=( x+( x=( x+( x,

y=g(x)在R上是減函數(shù),

∴當x≤1時,g(x)min=g(1)=

若不等式( x+( x﹣m≥0在x∈(﹣∞,1]時恒成立,

即m≤


【解析】(1)由函數(shù)f(x)=bax , (其中a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過點A(1,8),B(3,32),知 ,由此能求出f(x).(2)設g(x)=( x+( x=( x+( x
則y=g(x)在R上是減函數(shù),故當x≤1時,g(x)min=g(1)= .由此能求出實數(shù)m的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某工藝廠有銅絲5萬米,鐵絲9萬米,準備用這兩種材料編制成花籃和花盆出售,已知一只花籃需要用銅絲200米,鐵絲300米;編制一只花盆需要100米,鐵絲300米,設該廠用所有原來編制個花籃, 個花盆.

(Ⅰ)列出滿足的關系式,并畫出相應的平面區(qū)域;

(Ⅱ)若出售一個花籃可獲利300元,出售一個花盤可獲利200元,那么怎樣安排花籃與花盆的編制個數(shù),可使得所得利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣alnx,(a∈R).
(1)討論函數(shù)f(x)在定義域內(nèi)的極值點的個數(shù);
(2)設g(x)=﹣ ,若不等式f(x)>g(x)對任意x∈[1,e]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= ,其中a∈R.
(1)若a=1,f(x)的定義域為區(qū)間[0,3],求f(x)的最大值和最小值;
(2)若f(x)的定義域為區(qū)間(0,+∞),求a的取值范圍,使f(x)在定義域內(nèi)是單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是奇函數(shù).

(1)求實數(shù)的值;

(2)用定義證明函數(shù)上的單調(diào)性;

(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】荊州市政府為促進淡水魚養(yǎng)殖業(yè)的發(fā)展,將價格控制在適當?shù)姆秶鷥?nèi),決定對淡水魚養(yǎng)殖提供政府補貼.設淡水魚的市場價格為/千克,政府補貼為/千克.根據(jù)市場調(diào)查,當時,淡水魚的市場日供應量千克與市場日需求量千克近似滿足關系;.當市場日供應量與市場日需求量相等時的市場價格稱為市場平衡價格.

(1)將市場平衡價格表示為政府補貼的函數(shù),并求其定義域;

(2)為使市場平衡價格不高于10/千克,政府補貼至少為每千克多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(1)設的導函數(shù),求函數(shù)的極值;

(2)是否存在常數(shù),使得時, 恒成立,且有唯一解,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=1+lnx﹣ ,其中k為常數(shù).
(1)若k=0,求曲線y=f(x)在點(1,f(1))處的切線方程.
(2)若k=5,求證:f(x)有且僅有兩個零點;
(3)若k為整數(shù),且當x>2時,f(x)>0恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

(1)當時,求函數(shù)上的值域;

(2)若函數(shù)上的最小值為3,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案