【題目】某游戲公司對今年新開發(fā)的一些游戲進行評測,為了了解玩家對游戲的體驗感,研究人員隨機調(diào)查了300名玩家,對他們的游戲體驗感進行測評,并將所得數(shù)據(jù)統(tǒng)計如圖所示,其中.

1)求這300名玩家測評分數(shù)的平均數(shù);

2)由于該公司近年來生產(chǎn)的游戲體驗感較差,公司計劃聘請3位游戲?qū)<覍τ螒蜻M行初測,如果3人中有2人或3人認為游戲需要改進,則公司將回收該款游戲進行改進;若3人中僅1人認為游戲需要改進,則公司將另外聘請2位專家二測,二測時,2人中至少有1人認為游戲需要改進的話,公司則將對該款游戲進行回收改進.已知該公司每款游戲被每位專家認為需要改進的概率為,且每款游戲之間改進與否相互獨立.

i)對該公司的任意一款游戲進行檢測,求該款游戲需要改進的概率;

ii)每款游戲聘請專家測試的費用均為300/人,今年所有游戲的研發(fā)總費用為50萬元,現(xiàn)對該公司今年研發(fā)的600款游戲都進行檢測,假設(shè)公司的預(yù)算為110萬元,判斷這600款游戲所需的最高費用是否超過預(yù)算,并通過計算說明.

【答案】(1)76;(2)(i;(ii)所需的最高費用將超過預(yù)算.計算見解析

【解析】

(1)利用矩形面積和等于1列式可得,結(jié)合,可解得 的值,再用各區(qū)間的中點值與該矩形的面積相乘后再相加,即得平均值.

(2)(i)利用互斥事件的概率的加法公式可得;

(ii)利用期望公式求出這600款游戲所需的最高費用的平均值后,再利用導(dǎo)數(shù)求出最大值即可.

1)依題意,,

;

聯(lián)立兩式解得,

所求平均數(shù)為;

2)(i)因為一款游戲初測被認定需要改進的概率為,

一款游戲二測被認定需要改進的概率為,

所以某款游戲被認定需要改進的概率為:

;

ii)設(shè)每款游戲的評測費用為元,則的可能取值為9001500;

,

,

;

,

.

時,上單調(diào)遞增,

時,上單調(diào)遞減,

所以的最大值為

所以實施此方案,最高費用為

故所需的最高費用將超過預(yù)算.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠家具車間做A,B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A,B型桌子分別需要1小時和2小時,漆工油漆一張A,B型桌子分別需要3小時和1小時;又知木工和漆工每天工作分別不得超過8小時和9小時,設(shè)該廠每天做A,B型桌子分別為x張和y張.

1)試列出xy滿足的關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

2)若工廠做一張A,B型桌子分別獲得利潤為2千元和3千元,那么怎樣安排A,B型桌子生產(chǎn)的張數(shù),可使得所得利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓錐的展開側(cè)面圖是一個半圓,、是底面圓的兩條互相垂直的直徑,為母線的中點,已知過的平面與圓錐側(cè)面的交線是以為頂點、為對稱軸的拋物線的一部分.

1)證明:圓錐的母線與底面所成的角為;

2)若圓錐的側(cè)面積為,求拋物線焦點到準線的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

時,求函數(shù)的最小值;

若對任意,恒有成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求曲線在點處的切線方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)當時,求函數(shù)在上區(qū)間零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,求的最小值.

(Ⅱ)若在區(qū)間上有兩個極值點,

(i)求實數(shù)的取值范圍;

(ii)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了比較注射,兩種藥物后產(chǎn)生的皮膚皰疹的面積,選200只家兔做實驗,將這200只家兔隨機地分成兩組,每組100只,其中一組注射藥物,另一組注射藥物.下表1和表2分別是注射藥物和藥物后的實驗結(jié)果.(皰疹面積單位:

1:注射藥物后皮膚皰疹面積的頻數(shù)分布表

皰疹面積

頻數(shù)

30

40

20

10

2:注射藥物后皮膚皰疹面積的頻數(shù)分布表

皰疹面積

頻數(shù)

10

25

20

30

15

(1)完成下面頻率分布直方圖,并比較注射兩種藥物后皰疹面積的中位數(shù)大;

(2)完成下面列聯(lián)表,并回答能否有99.9%的把握認為注射藥物后的皰疹面積與注射藥物后的皰疹面積有差異”.

皰疹面積小于

皰疹面積不小于

合計

注射藥物

注射藥物

合計

附:

0.100

0.050

0.025

0.01

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于集合,,,,定義.集合中的元素個數(shù)記為.規(guī)定:若集合滿足,則稱集合具有性質(zhì).

(1)已知集合,,寫出,的值;

(2)已知集合,其中,證明:有性質(zhì)

(3)已知集合,有性質(zhì),且的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2lnx﹣2mx+x2(m>0).

(1)討論函數(shù)f(x)的單調(diào)性;

(2)當時,若函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象與x軸交于A,B兩點,其橫坐標分別為x1,x2(x1<x2),線段AB的中點的橫坐標為x0,且x1,x2恰為函數(shù)h(x)=lnx﹣cx2﹣bx的零點.求證(x1﹣x2)h'(x0)≥+ln2.

查看答案和解析>>

同步練習冊答案