【題目】已知橢圓)的左、右焦點分別為、,過右焦點的直線與橢圓交于兩點.當(dāng)時,是橢圓的下頂點,且的周長為6.

1)求橢圓的方程;

2)設(shè)橢圓的右頂點為,直線分別與直線交于、點,證明:當(dāng)變化時,以線段為直徑的圓與直線相切.

【答案】12)證明見解析

【解析】

1)由與橢圓交于兩點.當(dāng)時,是橢圓的下頂點,且的周長為6,得,解得,即可得到本題答案;

2)聯(lián)立直線方程與橢圓方程,得,,先求得兩點的坐標(biāo),然后可以表示出以線段為直徑的圓的標(biāo)準(zhǔn)方程,最后由圓心到直線的距離等于半徑,即可得到本題答案.

1)由題意知,,∴

又當(dāng)時,直線的方程為,∴,∴

聯(lián)立①、②有,,∴橢圓的方程為.

2)設(shè),

將直線代入中有,

,,

此時,

、,

∴以線段為直徑的圓的方程為.

化簡得:,

又圓心到直線的距離為.

∴以線段為直徑的圓與直線相切.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:給定整數(shù)i,如果非空集合滿足如下3個條件:

;②;③,若,則.

則稱集合A為“減i集”

1是否為“減0集”?是否為“減1集”?

2)證明:不存在“減2集”;

3)是否存在“減1集”?如果存在,求出所有“減1集”;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓)的離心率是,點在短軸上,且

(1)球橢圓的方程;

(2)設(shè)為坐標(biāo)原點,過點的動直線與橢圓交于兩點。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線axby1與圓x2y21相交于AB兩點(其中a,b是實數(shù)),且AOB是直角三角形(O是坐標(biāo)原點),則點P(a,b)與點(0,1)之間距離的最小值為( )

A.0B.C.1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知P是曲線上的點,Q是曲線上的點,曲線與曲線關(guān)于直線對稱,M為線段PQ的中點,O為坐標(biāo)原點,則的最小值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《宋人撲棗圖軸》是作于宋朝的中國古畫,現(xiàn)收藏于中國臺北故宮博物院.該作品簡介:院角的棗樹結(jié)實累累,小孩群來攀扯,枝椏不停晃動,粒粒棗子搖落滿地,有的牽起衣角,有的捧著盤子拾取,又玩又吃,一片興高采烈之情,躍然于絹素之上.甲、乙、丙、丁四人想根據(jù)該圖編排一個舞蹈,舞蹈中他們要模仿該圖中小孩撲棗的爬、扶、撿、頂四個動作,四人每人模仿一個動作.若他們采用抽簽的方式來決定誰模仿哪個動作,則甲不模仿且乙不模仿的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)有兩個極值點.

1)求實數(shù)的取值范圍;

2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)根據(jù)學(xué)生的興趣愛好,分別創(chuàng)建了“書法”、“詩詞”、“理學(xué)”三個社團,據(jù)資料統(tǒng)計新生通過考核選拔進入這三個社團成功與否相互獨立.2015年某新生入學(xué),假設(shè)他通過考核選拔進入該校的“書法”、“詩詞”、“理學(xué)”三個社團的概率依次為、、,己知三個社團他都能進入的概率為,至少進入一個社團的概率為,且.

(1)求的值;

(2)該校根據(jù)三個社團活動安排情況,對進入“書法”社的同學(xué)增加校本選修學(xué)分1分,對進入“詩詞”社的同學(xué)增加校本選修學(xué)分2分,對進入“理學(xué)”社的同學(xué)增加校本選修學(xué)分3分.求該新同學(xué)在社團方面獲得校本選修課學(xué)分分數(shù)不低于4分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠家舉行大型的促銷活動,經(jīng)測算某產(chǎn)品當(dāng)促銷費用為萬元時,銷售量萬件滿足(其中, 為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品萬件還需投入成本萬元(不含促銷費用),產(chǎn)品的銷售價格定為萬元/萬件.

(1)將該產(chǎn)品的利潤萬元表示為促銷費用萬元的函數(shù);

2)促銷費用投入多少萬元時,廠家的利潤最大.

查看答案和解析>>

同步練習(xí)冊答案