精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示的幾何體中,四邊形為正方形,ADB,平面ABC平面BC,AB=AC=,AD=1ABC=45°。

1)求證:AB⊥CD;

2)求點C到平面D的距離。

【答案】(1)見解析;(2)

【解析】試題分析:

(1)三角形ABC可得;由題意可得進而,故得于是可證得.(2)取BC的中點O, 的中點M

連接DO,DMOM三角形DOM中,可證得;在三角形中,可得,故可得,于是得從而得到,又由C到平面的距離為

試題解析

1)證明:在三角形ABC中, ,

,

, ,

,

,

,

2)解:如 圖,取BC的中點O 的中點M,連接DODM,OM,

在三角形DOM中, ,

,

又在三角形中, ,

,

,

,

,

C到平面的距離為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在如圖所示的多面體中,平面,,,,,,的中點.

(1)求證:;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是定義在上的奇函數.

1)若,求的值;

2)若是函數的一個零點,求函數在區(qū)間的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在貫徹中共中央國務院關于精準扶貧政策的過程中,某單位定點幫扶甲、乙兩個村各50戶貧困戶.為了做到精準幫扶,工作組對這100戶村民的年收入情況、勞動能力情況、子女受教育情況、危舊房情況、患病情況等進行調查,并把調查結果轉化為各戶的貧困指標,制成下圖,其中”表示甲村貧困戶,“”表示乙村貧困戶.若,則認定該戶為“絕對貧困戶”,若則認定該戶為“相對貧困戶”,若,則認定該戶為“低收入戶”;若,則認定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.

1)從乙村的50戶中隨機選出一戶,求該戶為“絕對貧困戶”的概率;

(2)從甲村所有“今年不能脫貧的非絕對貧困戶”中任選2戶,求選出的2戶均為“低收入戶”的概率;

(3)試比較這100戶中,甲、乙兩村指標的方差的大小(只需寫出結論).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知斜三棱柱的所有棱長都相等,且.

(1)求證:;

(2)直線與直線所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義域為的函數是奇函數.

(1) 求實數的值;

(2) 判斷并用定義證明該函數在定義域上的單調性;

(3) 若方程內有解,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有以下判斷:①表示同一函數;②函數的圖像與直線最多有一個交點;③不是函數;④若點的圖像上,則函數的圖像必過點.其中正確的判斷有___________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知平面內兩點

1)求的中垂線方程;

2)求過點且與直線平行的直線的方程;

3)一束光線從點射向(2)中的直線,若反射光線過點,求反射光線所在的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中, 橢圓的中心在坐標原點,其右焦點為,且點 在橢圓上.

(1)求橢圓的方程;

(2)設橢圓的左、右頂點分別為是橢圓上異于的任意一點,直線交橢圓于另一點,直線交直線點, 求證:三點在同一條直線上

查看答案和解析>>

同步練習冊答案