精英家教網 > 高中數學 > 題目詳情

要從12人中選出5人參加一項活動,其中A、B、C 3人至多2人入選,有多少種不同選法?

756

解析解:法一 可分三類:
①A,B,C三人均不入選,有C95種選法;
②A,B,C三人中選一人,有C31·C94種選法;
③A,B,C三人中選二人,有C32·C93種選法.
由分類計數加法原理,共有選法C95+C31·C94+C32·C93=756(種).
法二 先從12人中任選5人,再減去A,B,C三人均入選的情況,即共有選法C125-C92=756(種).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(12分)3名教師與4名學生排成一橫排照相,求:
(1)3名教師必須排在一起的不同排法有多少種?
(2)3名教師必須在中間(在3、4、5位置上)的不同排法有多少種?
(3)3名教師不能相鄰的不同排法有多少種?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知的展開式中前三項的系數成等差數列.設=a0+a1x+a2x2+…+anxn.求:
(1)a5的值;
(2)a0-a1+a2-a3+…+(-1)nan的值;
(3)ai(i=0,1,2,…,n)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4位參加辯論比賽的同學,比賽規(guī)則是:每位同學必須從甲、乙兩道題中任選一題做答,選甲題答對得100分,答錯得-100分;選乙題答對得90分,答錯得-90分.若4位同學的總分為0分,則這4位同學有多少種不同得分情況?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(1)已知(1-2x)2008=a0+a1x+a2x2+…+a2008x2008(x∈R),求a0+a1+a2+…+a2008的值;
(2)已知(1-2x+3x2)7=a0+a1x+a2x2+…+a13x13+a14x14,求a1+a3+a5+…+a13的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某運輸公司有7個車隊.每個車隊的車都多于4輛且型號相同,要從這7個車隊中抽出10輛車組成一運輸車隊,每個車隊至少抽1輛車,則不同抽法有多少種?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

解下列方程或不等式.
(1)3ªA8x=4ªA9x-1;(2)Ax-22+x≥2.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知:

(1)當時,求的值。
(2)設,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

用0,1,2, 3,4,5這六個數字:
(1)能組成多少個無重復數字的四位偶數?
(2)能組成多少個無重復數字且為5的倍數的五位數?
(3)能組成多少個無重復數字且比1325大的四位數?

查看答案和解析>>

同步練習冊答案