【題目】在△ABC中,sinB+ sin =1﹣cosB.
(1)求角B的大;
(2)求sinA+cosC的取值范圍.
【答案】
(1)解:由sinB+ sin =1﹣cosB.
可得:2sin cos + sin =1﹣(1﹣2 )
2cos + =2sin
=2 sin( )
sin( )= ,
∵0<B<π,
∴0< <π,
∴ < < ,
∴sin( )=sin
∴B= ;
(2)解:由(1)可得B= ,
∴A+C= ,
那么:sinA+cosC=sinA+cos( ﹣A)= sinA cosA= sin(A+ ),
∵0<A< ,
∴ <A+ < ,
sin(A+ )∈( , ),
∴sinA+cosC的取值范圍是( , ).
【解析】1、由正余弦的二倍角公式可得原式化為sin( )= ,根據(jù)角的取值范圍可得 sin( )=sin 既得結(jié)果。
2、根據(jù)(1)的結(jié)論由三角形的內(nèi)角和可得A+C= ,把要求的式子整理化簡得sinA+cosC= 3 sin(A+ ),再根據(jù)角的取值范圍可得 <A+ < ,故得sinA+cosC的取值范圍。
【考點(diǎn)精析】認(rèn)真審題,首先需要了解正弦定理的定義(正弦定理:).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】200名職工年齡分布如圖所示,從中隨機(jī)抽取40名職工作樣本,采用系統(tǒng)抽樣方式,按1~200編號分為40組,分別為1~5,6~10,…,196~200,第5組抽取號碼為23,第9組抽取號碼為;若采用分層抽樣,40﹣50歲年齡段應(yīng)抽取人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)a1=1,且an+1=2an+1(n∈N*)
(Ⅰ)證明數(shù)列{an+1}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Sn;
(Ⅲ)在條件(Ⅱ)下對任意正整數(shù)n,不等式Sn+ ﹣1>(﹣1)na恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,則( )
A.f(x)的一個(gè)對稱中心為
B.f(x)的圖象關(guān)于直線 對稱
C.f(x)在 上是增函數(shù)
D.f(x)的周期為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
(1)求函數(shù)f(x)的解析式,并求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)畫出函數(shù)f(x)在[0,2π]上的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}滿足3a8=5a15 , 且 ,Sn為其前n項(xiàng)和,則數(shù)列{Sn}的最大項(xiàng)為( )
A.
B.S24
C.S25
D.S26
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 ﹣ =1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2 , 過點(diǎn)F1且垂直于x軸的直線與該雙曲線的左支交于A、B兩點(diǎn),AF2、BF2分別交y軸于P、Q兩點(diǎn),若△PQF2的周長為12,則ab取得最大值時(shí)該雙曲線的離心率為( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,則函數(shù)f(3x﹣2)的定義域?yàn)椋?)
A.[ , ]
B.[﹣1, ]
C.[﹣3,1]
D.[ ,1]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com