在平面直角坐標系中,以原點為極點,x軸正半軸為極軸同時建立極坐標系,若直線l的極坐標方程為ρsin(θ+
π
4
)=
2
2
,曲線C的參數(shù)方程為
x=-1+cosθ
y=sinθ
(θ為參數(shù)),則在曲線C上點到直線l上點的最小距離為
 
考點:參數(shù)方程化成普通方程
專題:坐標系和參數(shù)方程
分析:把參數(shù)方程、極坐標化為直角坐標方程,求出弦心距d,則d-r即為所求.
解答:解:直線l的極坐標方程為ρsin(θ+
π
4
)=
2
2
,即
2
2
ρcosθ+
2
2
ρsinθ=
2
2
,
化為直角坐標方程為 x+y-1=0.
把曲線C的參數(shù)方程為
x=-1+cosθ
y=sinθ
(θ為參數(shù)),消去參數(shù),化為普通方程為 (x+1)2+y2=1,
表示以(-1,0)為圓心、半徑等于1的圓.
求得弦心距d=
|-1+0-1|
2
=
2
,可得曲線C上點到直線l上點的最小距離為
2
-1
,
故答案為:
2
-1.
點評:本題主要考查把參數(shù)方程、極坐標化為直角坐標方程的方法,點到直線的距離公式的應(yīng)用,直線和圓的位置關(guān)系,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

將參數(shù)方程
x=2t2
y=2t
(t為參數(shù))化為普通方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線
x=2+2t
y=-1+t
(t為參數(shù))上對應(yīng)t=0,t=1兩點間的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩曲線C1
x=t
y=t+1
(t為參數(shù))與C2:ρ=4sinθ相交于A、B兩點,則兩點的距離|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標系xOy中,直線l的參數(shù)方程為l:
x=1+t
y=t
(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C:ρ=
8cosθ
1-cos2θ
.直線l被曲線C截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以平面直角坐標系的原點為極點,x軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數(shù)方程是
x=t+1
y=t-3
(t為參數(shù)),圓C的極坐標方程是ρ=4cosθ,則直線l被圓C截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:
x2
4
+
y2
9
=1,直線l:
x=2+t
y=2-2t
(t為參數(shù))
(Ⅰ)寫出曲線C的參數(shù)方程,直線l的普通方程.
(Ⅱ)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標系中,圓C的圓心坐標為C(2,
π
3
),半徑為2.以極點為原點,極軸為x的正半軸,取相同的長度單位建立平面直角坐標系,直線l的參數(shù)方程為
x=1-
3
2
t
y=
3
+
1
2
t
(t為參數(shù))
(Ⅰ)求圓C的極坐標方程;
(Ⅱ)設(shè)l與圓C的交點為A,B,l與x軸的交點為P,求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆四川省成都市高三10月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知三個數(shù)2,m,8構(gòu)成一個等比數(shù)列,則圓錐曲線的離心率為( )

A. B. C. D.

 

查看答案和解析>>

同步練習冊答案