已知橢圓的對稱軸為坐標(biāo)軸,焦點是(0,),(0,),又點在橢圓上.

(1)求橢圓的方程;

(2)已知直線的斜率為,若直線與橢圓交于、兩點,求面積的最大值.

 

【答案】

(1)(2)

【解析】

試題分析:解: (Ⅰ)由已知拋物線的焦點為,故設(shè)橢圓方程為.

將點代入方程得,整理得,

解得(舍).故所求橢圓方程為.    

(Ⅱ)設(shè)直線的方程為,設(shè)

代入橢圓方程并化簡得,

,可得 ①.

,

.

又點的距離為,         

,

當(dāng)且僅當(dāng),即時取等號(滿足①式)

所以面積的最大值為.    

考點:橢圓的方程

點評:關(guān)于曲線的大題,第一問一般是求出曲線的方程,第二問常與直線結(jié)合起來,當(dāng)涉及到交點時,常用到根與系數(shù)的關(guān)系式:)。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)求與橢圓4x 2+9y 2=36 有相同的焦點,且過點(0,3)的橢圓方程.
(2)已知橢圓的對稱軸為坐標(biāo)軸,離心率e=
23
,長軸長為12,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的對稱軸為坐標(biāo)軸,離心率e=
2
3
,短軸長為8
5
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的對稱軸為坐標(biāo)軸,短軸的一個端點和兩個焦點的連線構(gòu)成一個正三角形,且焦點到橢圓上的點的最短距離為
3
,則橢圓的方程為(  )
A、
x2
12
+
y2
9
=1
B、
x2
9
+
y2
12
=1
x2
12
+
y2
3
=1
C、
x2
12
+
y2
3
=1
D、
x2
12
+
y2
9
=1
x2
9
+
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年東城區(qū)期末理)(13分)

 已知橢圓的對稱軸為坐標(biāo)軸,且拋物線的焦點是橢圓的一個焦點,又點在橢圓上.

(Ⅰ)求橢圓的方程;

(Ⅱ)已知直線的方向向量為,若直線與橢圓交于、兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本小題滿分13分)已知橢圓的對稱軸為坐標(biāo)軸且焦點在x軸,離心率,短軸長為4,(1)求橢圓的方程;

(2)過橢圓的右焦點作一條斜率為2的直線與橢圓交于兩點,求AB的中點坐標(biāo)及其弦長|AB|。

 

查看答案和解析>>

同步練習(xí)冊答案