【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當時,是否存在整數(shù),使不等式恒成立?若存在,求整數(shù)的值;若不存在,則說明理由;
(3)關(guān)于的方程在上恰有兩個相異實根,求實數(shù)的取值范圍.
【答案】(1)單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.(2)(3)
【解析】試題分析:(1)求函數(shù)的定義域、導(dǎo)函數(shù),由, 可求單調(diào)區(qū)間;(2)由(1)可求函數(shù)在上的單調(diào)性,進而求最大值、最小值。由不等式恒成立,得 ,解不等式組可求m的范圍;(3)構(gòu)造函數(shù)= ,求其導(dǎo)函數(shù),進而求單調(diào)性、最大、最小值,由關(guān)于的方程在上恰有兩個相異實根,轉(zhuǎn)化為,進而不等式組求實數(shù)的取值范圍.
試題解析:(1)由得函數(shù)的定義域為.
.
由,得;由,得.
∴函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.
(2)由(1)知, 在上單調(diào)遞減,在上單調(diào)遞增.∴.
又, ,且,
∴時, .
∵不等式恒成立,
∴,
即
.
∵是整數(shù),∴.
∴存在整數(shù),使不等式恒成立.
(3)由,得.
令, ,則, .
由,得;由得.
∴在上單調(diào)遞減,在上單調(diào)遞增.
∵方程在上恰有兩個相異實根,
∴函數(shù)在和上各有一個零點.
∴
.
∴實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】某校對高一年級學生寒假參加社區(qū)服務(wù)的次數(shù)進行了統(tǒng)計,隨機抽取了名學生作為樣本,得到這名學生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計表和頻率分布直方圖如下:
(1)求表中的值和頻率分布直方圖中的值,并根據(jù)頻率分布直方圖估計該校高一學生寒假參加社區(qū)服務(wù)次數(shù)的中位數(shù);
(2)如果用分層抽樣的方法從樣本服務(wù)次數(shù)在和的人中共抽取6人,再從這6人中選2人,求2人服務(wù)次數(shù)都在的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,,又平面,且,點在棱上,且.
(1)求異面直線與所成的角的大小;
(2)求證:平面;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠有容量300噸的水塔一個,每天從早六點到晚十點供應(yīng)生活和生產(chǎn)用水,已知:該廠生活用水每小時10噸,工業(yè)用水總量(噸)與時間(單位:小時,規(guī)定早晨六點時)的函數(shù)關(guān)系為,水塔的進水量有10級,第一級每小時進水10噸,以后每提高一級, 進水量增加10噸.若某天水塔原有水100噸,在供應(yīng)同時打開進水管.問該天進水量應(yīng)選擇幾級,既能保證該廠用水(即水塔中水不空),又不會使水溢出?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個幾何體的三視圖如下圖所示,其中主視圖與左視圖是腰長為6的等腰直角三角形,俯視圖是正方形.
(Ⅰ)請畫出該幾何體的直觀圖,并求出它的體積;
(Ⅱ)用多少個這樣的幾何體可以拼成一個棱長為6的正方體ABCD—A1B1C1D1? 如何組拼?試證明你的結(jié)論;
(Ⅲ)在(Ⅱ)的情形下,設(shè)正方體ABCD—A1B1C1D1的棱CC1的中點為E, 求平面AB1E與平面ABC所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,.
(1)若,求函數(shù)的極值;
(2)若函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍;
(3)在函數(shù)的圖象上是否存在不同的兩點,使線段的中點的橫坐標與直線的斜率之間滿足?若存在,求出;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,關(guān)于的方程有三個不同的實根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題共13分)根據(jù)以往的成績記錄,甲、乙兩名隊員射擊擊中目標靶的環(huán)數(shù)的頻率分布情況如圖所示
(1)求上圖中的值;
(2)甲隊員進行一次射擊,求命中環(huán)數(shù)大于7環(huán)的概率(頻率當作概率使用);
(3)由上圖判斷甲、乙兩名隊員中,哪一名隊員的射擊成績更穩(wěn)定(結(jié)論不需證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.
(2)若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com