已知
1+sinθ+cosθ
1+sinθ-cosθ
=
1
2
,則tanθ=
 
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:計(jì)算題,三角函數(shù)的求值
分析:利用
1+sinθ+cosθ
1+sinθ-cosθ
=
1
2
,求出cosθ=-
3
5
,sinθ=
4
5
,再求tanθ.
解答: 解:∵
1+sinθ+cosθ
1+sinθ-cosθ
=
1
2
,
∴sinθ+3cosθ=-1,
∵sin2θ+cos2θ=1,
∴cosθ=-
3
5
,sinθ=
4
5
,或cosθ=0,sinθ=-1(舍去)
∴tanθ=-
4
3

故答案為:-
4
3
點(diǎn)評:本題考查同角三角函數(shù)基本關(guān)系的運(yùn)用,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)的圖象,則正確的判斷是( 。
A、f(x)在(-2,1)上是增函數(shù)
B、x=1是f(x)的極大值點(diǎn)
C、f(x)在(-1,2)上是增函數(shù),在(2,4)上是減函數(shù)
D、x=3是f(x)的極小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面四個(gè)命題中:
①兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近于1;
②從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每15分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是系統(tǒng)抽樣;
③對分類變量X與Y的隨機(jī)變量K2的觀測值k來說,k越小,“X與Y有關(guān)系”的把握程度越大;
④在回歸直線方程
y
=-0.6x+9中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量
y
平均減少0.6個(gè)單位;
其中有一個(gè)是假命題,其序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

log6[log4(log381]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x3+sinx
(x2+cosx)+1

(1)f(a)=
3
2
,則f(-a)=
 

(2)f(x)在區(qū)間[-
π
2
,
π
2
]上的最大值為M,最小值為m,則m+M=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD為梯形,AB∥CD,l為空間一直線,則“l(fā)垂直于兩腰AD,BC”是“l(fā)垂直于兩底AB,DC”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分不要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin2x-2sin2
x.若點(diǎn)P(1,-
3
)
在角α的終邊上.
(1)求sinα;
(2)求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線2x+y=1與直線4x-ay-3=0平行,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,sinα+cosα<0,則
sin(2π-α)•sin(π+α)•cos(π+α)
sin(3π-α)•cos(π+α)
=
 

查看答案和解析>>

同步練習(xí)冊答案