【題目】某天連續(xù)有節(jié)課,其中語文、英語、物理、化學(xué)、生物科各節(jié),數(shù)學(xué)節(jié)在排課時,要求生物課不排第節(jié),數(shù)學(xué)課要相鄰,英語課與數(shù)學(xué)課不相鄰,則不同排法的種數(shù)是( )

A B

C D

【答案】A

【解析】

試題分析:數(shù)學(xué)在第節(jié),從除英語的4門課中選1門安排在第3節(jié),剩下的任意排故有種,數(shù)學(xué)在第節(jié),從除英語,生物外的3門課中選1門安排在第1節(jié),除英語剩下的3門課再選1門安排在第4節(jié),剩下的任意排,故有種,數(shù)學(xué)在情況一樣,當(dāng)英語在第一節(jié)時,其它任意排,故有種,當(dāng)英語不在第1節(jié),從除英語,生物外的3門課中選一門安排在第一節(jié),再從除英語的剩下的3門中選2門放在數(shù)學(xué)課前1節(jié)和后一節(jié),剩下的任意排,有種,故有種,數(shù)學(xué)在第節(jié),當(dāng)英語在第一節(jié)時,其它任意排,故有種,當(dāng)英語不在第1節(jié),從除英語,生物外的3門課中選一門安排在第一節(jié),再從除英語的剩下的3門中選1門放在第5節(jié),剩下的任意排,有種,故有種,根據(jù)分類計數(shù)原理,共有故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名運動員參加“選拔測試賽”,在相同條件下,兩人6次測試的成績(單位:分)記錄如下:

甲 86 77 92 72 78 84

乙 78 82 88 82 95 90

(1)用莖葉圖表示這兩組數(shù)據(jù),現(xiàn)要從中選派一名運動員參加比賽,你認(rèn)為選派誰參賽更好?說明理由(不用計算);

(2)若將頻率視為概率,對運動員甲在今后三次測試成績進行預(yù)測,記這三次成績高于85分的次數(shù)為,求的分布列和數(shù)學(xué)期望及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某險種的基本保費為(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,

續(xù)保人本年度的保費與其上年度出險次數(shù)的關(guān)聯(lián)如下:

上年度出險次數(shù)

0

1

2

3

4

保費

隨機調(diào)查了該險種的400名續(xù)保人在一年內(nèi)的出險情況,得到如下統(tǒng)計表:

出險次數(shù)

0

1

2

3

4

頻數(shù)

120

100

60

60

40

20

A為事件:“一續(xù)保人本年度的保費不高于基本保費”.的估計值;

(Ⅱ)B為事件:“一續(xù)保人本年度的保費高于基本保費但不高于基本保費的190%”.

的估計值;

(III)求續(xù)保人本年度的平均保費估計值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組函數(shù)中,表示同一個函數(shù)的是(
A.y= 與y=x+1
B.y=lgx與y= lgx2
C.y= ﹣1與y=x﹣1
D.y=x與y=logaax(a>0且a≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,比較與1的大;

(2)當(dāng)時,如果函數(shù)僅有一個零點,求實數(shù)的取值范圍;

(3)求證:對于一切正整數(shù),都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù)),以原點O為極點,以x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=﹣
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)若C1上的點P對應(yīng)的參數(shù)為t= ,Q為C2上的動點,求PQ中點M到直線C3 (α為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 的定義域是一切實數(shù),則m的取值范圍是(
A.0<m≤4
B.0≤m≤1
C.m≥4
D.0≤m≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=2+log3x,x∈[1,9],求函數(shù)y=[f(x)]2+f(x2)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=x2﹣2x.
(1)畫出f(x)的簡圖,并求f(x)的解析式;

(2)利用圖象討論方程f(x)=k的根的情況.(只需寫出結(jié)果,不要解答過程).

查看答案和解析>>

同步練習(xí)冊答案