【題目】微信是現(xiàn)代生活進(jìn)行信息交流的重要工具,若要調(diào)查某公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,并規(guī)定每天使用微信時(shí)間在一小時(shí)以上為經(jīng)常使用微信。據(jù)統(tǒng)計(jì),該公司200名員工中90%的人使用微信,其中不經(jīng)常使用微信的有60人,其余經(jīng)常使用微信。若將員工年齡分成青年(年齡小于40歲)和中年(年齡不小于40歲)兩個(gè)階段,使用微信的中75%是青年人.經(jīng)常使用微信的員工中,有80人是青年人.

(1)請(qǐng)完成如下聯(lián)列表,

青年人

中年人

合計(jì)

經(jīng)常使用微信

不經(jīng)常使用微信

合計(jì)

(2)由列聯(lián)表中所得數(shù)據(jù),是否有99.9%的把握認(rèn)為“經(jīng)常使用微信與年齡有關(guān)”?

3現(xiàn)采用分層抽樣的方法從“經(jīng)常使用微信的人”中抽取6人,從已抽取的這6人中任選2人,求“選出的2人均為青年人”的概率.

【答案】(1)見(jiàn)解析;(2)經(jīng)常使用微信與年齡有關(guān);(3)

【解析】試題分析:

(1)利用題意完成題中所給的列聯(lián)表即可;

(2)由題意求得 , 所以有99.9%的把握認(rèn)為“經(jīng)常使用微信與年齡有關(guān)”.

(3)由古典概型可得“選出的2人均為青年人”的概率為.

試題解析:

(1)

青年人

中年人

合計(jì)

經(jīng)常使用微信

80

40

120

不經(jīng)常使用微信

55

5

60

合計(jì)

135

45

180

(2)依題意: ,

由于,所以有99.9%的把握認(rèn)為“經(jīng)常使用微信與年齡有關(guān)”.

(3)從“經(jīng)常使用微信”的人中抽取6人,其中青年人4人,中年人2人,

則從已抽取的這6人中任選2人,“選出的2人均為青年人”的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=5x+x-2,g(x)=log5x+x-2的零點(diǎn)分別為x1,x2,則x1+x2的值為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨機(jī)擲兩枚質(zhì)地均勻的骰子,它們向上的點(diǎn)數(shù)之和不超過(guò)5的概率記為p1,點(diǎn)數(shù)之和大于5的概率記為p2,點(diǎn)數(shù)之和為偶數(shù)的概率記為p3,則

 (  )

A. p1<p2<p3 B. p2<p1<p3 C. p1<p3<p2 D. p3<p1<p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】表示一位騎自行車(chē)和一位騎摩托車(chē)的旅行者在相距80 km的甲、乙兩城間從甲城到乙城所行駛的路程與時(shí)間之間的函數(shù)關(guān)系,有人根據(jù)函數(shù)圖象,提出了關(guān)于這兩個(gè)旅行者的如下信息:

①騎自行車(chē)者比騎摩托車(chē)者早出發(fā)3 h,晚到1 h;

②騎自行車(chē)者是變速運(yùn)動(dòng),騎摩托車(chē)者是勻速運(yùn)動(dòng);

③騎摩托車(chē)者在出發(fā)1.5 h后追上了騎自行車(chē)者;

④騎摩托車(chē)者在出發(fā)1.5 h后與騎自行車(chē)者速度一樣.

其中,正確信息的序號(hào)是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1是實(shí)數(shù)集上的奇函數(shù),求的值;

2用定義證明在實(shí)數(shù)集上單調(diào)遞增;

3值域?yàn)?/span>,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地政府鑒于某種日常食品價(jià)格增長(zhǎng)過(guò)快,欲將這種食品價(jià)格控制在適當(dāng)范圍內(nèi),決定對(duì)這種食品生產(chǎn)廠家提供政府補(bǔ)貼,設(shè)這種食品的市場(chǎng)價(jià)格為x元/千克,政府補(bǔ)貼為t元/千克,根據(jù)市場(chǎng)調(diào)查,當(dāng)16≤x≤24時(shí),這種食品市場(chǎng)日供應(yīng)量p萬(wàn)千克與市場(chǎng)日需求量q萬(wàn)千克近似地滿足關(guān)系:p=2(x+4t-14)(x≥16,t≥0),q=24+8ln (16≤x≤24).當(dāng)p=q時(shí)的市場(chǎng)價(jià)格稱(chēng)為市場(chǎng)平衡價(jià)格.

(1)將政府補(bǔ)貼表示為市場(chǎng)平衡價(jià)格的函數(shù),并求出函數(shù)的值域.

(2)為使市場(chǎng)平衡價(jià)格不高于每千克20元,政府補(bǔ)貼至少為每千克多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2-2aln x+(a-2)x,a∈R.

(1)當(dāng)a=1時(shí),求函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程.

(2)是否存在實(shí)數(shù)a,對(duì)任意的x1,x2∈(0,+∞)且x1≠x2>a恒成立?若存在,求出a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班主任對(duì)全班50名學(xué)生的學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下表所示:

積極參加班級(jí)工作

不太主動(dòng)參加班級(jí)工作

合計(jì)

學(xué)習(xí)積極性一般

6

19

25

合計(jì)

24

26

50

(1)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?

(2)判斷是否有的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度有關(guān)系?

, n=a+b+c+d.

P(K2k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABCDA1B1C1D1是正方體,畫(huà)出圖中陰影部分的平面與平面ABCD的交線,并給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案