若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與拋物線x2=4y的準(zhǔn)線所圍成的三角形面積為2,則該雙曲線的離心率為( 。
A.
5
2
B.
2
C.
3
D.
5
拋物線x2=4y的準(zhǔn)線方程為y=-1,雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線方程為y=±
b
a
x,
∴拋物線的準(zhǔn)線與雙曲線的兩條漸近線的交點(diǎn)坐標(biāo)為(±
a
b
,-1),
∴拋物線的準(zhǔn)線與雙曲線的兩條漸近線所圍成的三角形的面積是
1
2
a
b
•2
=2,
a
b
=2,
∴b=
1
2
a,
∴c=
a2+b2
=
5
2
a,
∴e=
c
a
=
5
2

故選:A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線
x2
9
-
y2
16
=1
的焦點(diǎn)到漸近線的距離等于( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知離心率為
2
的雙曲線
x2
2
-
y2
b2
=1(b>0)
的左右焦點(diǎn)分別為F1,F(xiàn)2,且點(diǎn)P(
3
,1)
在曲線上,則
PF1
PF2
=( 。
A.-12B.-2C.0D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,離心率為e,過F2的直線與雙曲線的右支交于A、B兩點(diǎn),若△F1AB是以A為直角頂點(diǎn)的等腰直角三角形,則e2=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線
x2
4
-
y2
12
=1
上一點(diǎn)P到右焦點(diǎn)F的距離為8,則P到右準(zhǔn)線的距離為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的頂點(diǎn)在x軸上,兩個頂點(diǎn)之間的距離為8,離心率e=
5
4

(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)求雙曲線的焦點(diǎn)到其漸近線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,相距200海里的A、B兩地分別有救援A船和B船.在接到求救信息后,A船能立即出發(fā),B船因港口原因需2小時后才能出發(fā),兩船的航速都是30海里/小時.在同時收到求救信息后,A船早于B船到達(dá)的區(qū)域稱為A區(qū),否則稱為B區(qū).若在A地北偏東45°方向,距A地150
2
海里處的M點(diǎn)有一艘遇險船正以10海里/小時的速度向正北方向漂移.A區(qū)與B區(qū)邊界線(即A、B兩船能同時到達(dá)的點(diǎn)的軌跡)方程;
問:
①應(yīng)派哪艘船前往救援?
②救援船最快需多長時間才能與遇險船相遇?(精確到0.1小時)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知某探照燈反光鏡的縱切面是拋物線的一部分,光源安裝在焦點(diǎn)上,且燈的深度等于燈口直徑,且為64 ,則光源安裝的位置到燈的頂端的距離為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)在拋物線C:的準(zhǔn)線上,記C的焦點(diǎn)為F,則直線AF的斜率為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案