選修4-4:坐標(biāo)系與參數(shù)方程.
極坐標(biāo)系與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸.已知直線l的參數(shù)方程為
x=2+tcosα
y=tsinα
(t為參數(shù)).曲線C的極坐標(biāo)方程為ρsin2θ=8cosθ.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),與x軸的交點(diǎn)為F,求
1
|AF|
+
1
|BF|
的值.
(1)由曲線C的極坐標(biāo)方程為ρsin2θ=8cosθ,可得ρ2sin2θ=8ρcosθ.
把x=ρcosθ,y=ρsinθ代入上式可得y2=8x.
(2)由直線l的參數(shù)方程為
x=2+tcosα
y=tsinα
,可得l與x軸的交點(diǎn)F(2,0).
把直線l的方程代入拋物線方程可得(tsinα)2=8(2+tcosα),整理得t2sin2α-8tcosα-16=0,
由已知sinα≠0,△=(-8sinα)2-4×(-16)sinα>0,
∴sinα≠0,cos2α+sinα>0.
t1+t2=
8cosα
sin2α
t1t2=-
16
sin2α
<0.
1
|AF|
+
1
|BF|
=|
1
t1
-
1
t2
|
=|
t1-t2
t1t2
|
=
(t1+t2)2-4t1t2
|t1t2|
=
(
8cosα
sin2α
)2+
64
sin2α
16
sin2α
=
1
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且經(jīng)過點(diǎn),直線交橢圓于不同的兩點(diǎn)A,B.
(1)求橢圓的方程;
(2)求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求由三條直線2x+5y-10=0,2x-3y+6=0,2x+y-10=0圍成的三角形外心的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在極坐標(biāo)系中,直線ρcosθ=1與曲線ρ=4cosθ相交于A、B兩點(diǎn),O為極點(diǎn),則∠AOB的大小為(  )
A.60°B.90°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=-2cosθ的圓心的極坐標(biāo)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)的直角坐標(biāo),則它的柱坐標(biāo)為____;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),X軸的正半軸為極軸,取與直角坐標(biāo)系相同的長(zhǎng)度單位建立極坐標(biāo)系.曲線C1的參數(shù)方程為:
x=acosφ
y=sinφ
(φ為參數(shù));射線C2的極坐標(biāo)方程為:θ=
π
4
,且射線C2與曲線C1的交點(diǎn)的橫坐標(biāo)為
6
3

(I)求曲線C1的普通方程;
(II)設(shè)A、B為曲線C1與y軸的兩個(gè)交點(diǎn),M為曲線C1上不同于A、B的任意一點(diǎn),若直線AM與MB分別與x軸交于P,Q兩點(diǎn),求證|OP|.|OQ|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線3x-4y-1=0被曲線
x=2cosθ
y=1+2sinθ
(θ為參數(shù))所截得的弦長(zhǎng)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)A,B分別在曲線為參數(shù))和曲線上,則的最小值為                

查看答案和解析>>

同步練習(xí)冊(cè)答案