精英家教網 > 高中數學 > 題目詳情

設定義域為R的函數, 若關于x的函數有8個不同的零點,則實數b的取值范圍是               

 

【答案】

【解析】根據已知函數式,可知結合數形結合思想,來得到關于分段函數的圖像,那么要是x的函數有8個不同的零點,可知實數b的范圍是

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設定義域為R的函數f(x)滿足下列條件:①對任意x∈R,f(x)+f(-x)=0;②對任意x1,x2∈[1,a],當x2>x1時,有f(x2)>f(x1)>0.則下列不等式不一定成立的是(  )
A、f(a)>f(0)
B、f(
1+a
2
)>f(
a
)
C、f(
1-3a
1+a
)>f(-3)
D、f(
1-3a
1+a
)>f(-a)

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義域為R的函數f(x)=|x2-2x|,則關于x的方程g(x)=
1
3
f3(x)-f2(x)+2
,能讓g(x)取極大值的x個數為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義域為R的函數f(x)=
|lg|x-1||,x≠1
0,x=1
且關于x的方程f2(x)+bf(x)+c=0有7個不同實數解,令m=2010b,n=2010c,則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義域為R的函數f(x)=
4
|x-1
(x≠1)
2
 (x=1)
,若關于x的方程f2(x)+bf(x)+c=0有三個不同的實數解x1、x2、x3,則x12+x22|x32等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網設定義域為R的函數f(x)=
|x+1|,x≤0
x2-2x+1,x>0

(Ⅰ)在平面直角坐標系內作出函數f(x)的圖象,并指出f(x)的單調區(qū)間(不需證明);
(Ⅱ)若方程f(x)+2a=0有兩個解,求出a的取值范圍(只需簡單說明,不需嚴格證明).
(Ⅲ)設定義為R的函數g(x)為奇函數,且當x>0時,g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

同步練習冊答案