【題目】在長方體ABCD-A1B1C1D1中,求證:
(1)AB∥平面A1B1C;
(2)平面ABB1A1⊥平面A1BC.
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其指標值來衡量,其指標值越大表明質(zhì)量越好,且指標值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品,現(xiàn)用兩種新配方(分別稱為A配方和B配方)做試驗,各生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的指標值,得到了下面的試驗結(jié)果: A配方的頻數(shù)分布表
指標值分組 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
頻數(shù) | 8 | 20 | 42 | 22 | 8 |
B配方的頻數(shù)分布表
指標值分組 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
頻數(shù) | 4 | 12 | 42 | 32 | 10 |
(1)分別估計用A配方,B配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;
(2)已知用B配方生產(chǎn)的一件產(chǎn)品的利潤y(單位:元)與其指標值t的關(guān)系式為y= ,估計用B配方生產(chǎn)的一件產(chǎn)品的利潤大于0的概率,并求用B配方生產(chǎn)的上述產(chǎn)品平均每件的利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知平面直角坐標中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(,參數(shù)),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系.
(1)若,求直線以及曲線的極坐標方程;
(2)已知,,,均在曲線上,且四邊形為矩形為矩形,求其周長的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中,正確的命題是
A. 任意三點確定一個平面
B. 三條平行直線最多確定一個平面
C. 不同的兩條直線均垂直于同一個平面,則這兩條直線平行
D. 一個平面中的兩條直線與另一個平面都平行,則這兩個平面平行
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司共有職工1500人,其中男職工1050人,女職工450人.為調(diào)查該公司職工每周平均上網(wǎng)的時間,采用分層抽樣的方法,收集了300名職工每周平均上網(wǎng)時間的樣本數(shù)據(jù)(單位:小時)
男職工 | 女職工 | 總計 | |
每周平均上網(wǎng)時間不超過4個小時 | |||
每周平均上網(wǎng)時間超過4個小時 | 70 | ||
總計 | 300 |
(Ⅰ)應收集多少名女職工樣本數(shù)據(jù)?
(Ⅱ)根據(jù)這300個樣本數(shù)據(jù),得到職工每周平均上網(wǎng)時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:,,,,,.試估計該公司職工每周平均上網(wǎng)時間超過4小時的概率是多少?
(Ⅲ)在樣本數(shù)據(jù)中,有70名女職工的每周平均上網(wǎng)時間超過4個小時.請將每周平均上網(wǎng)時間與性別的列聯(lián)表補充完整,并判斷是否有95%的把握認為“該公司職工的每周平均上網(wǎng)時間與性別有關(guān)”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=-,若x∈R,f(x)滿足f(-x)=-f(x).
(1)求實數(shù)a的值;
(2)判斷函數(shù)f(x)(x∈R)的單調(diào)性,并說明理由;
(3)若對任意的t∈R,不等式f(t2-4t)+f(-k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設為拋物線的準線上一點,F為C 的焦點,點P在C上且滿足,若當m取得最小值時,點P恰好在以原點為中心,F為焦點的雙曲線上,則該雙曲線的離心率為
A. B. 3 C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有下列五個命題: ①函數(shù)y=4cos2x,x∈[﹣10π,10π]不是周期函數(shù);
②已知定義域為R的奇函數(shù)f(x),滿足f(x+3)=f(x),當x∈(0, )時,f(x)=sinπx,則函數(shù)f(x)在區(qū)間[0,6]上的零點個數(shù)是9;
③為了得到函數(shù)y=﹣cos2x的圖象,可以將函數(shù)y=sin(2x﹣ )的圖象向左平移 ;
④已知函數(shù)f(x)=x﹣sinx,若x1 , x2∈[﹣ , ]且f(x1)+f(x2)>0,則x1+x2>0;
⑤設曲線f(x)=acosx+bsinx的一條對稱軸為x= ,則點( ,0)為曲線y=f( ﹣x)的一個對稱中心.
其中正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= x3+2x2+3x(x∈R)的圖象為曲線C,問:是否存在一條直線與曲線C同時切于兩點?若存在,求出符合條件的所在直線方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com