【題目】隨著網(wǎng)絡時代的進步,流量成為手機的附帶品,人們可以利用手機隨時隨地的瀏覽網(wǎng)頁,聊天,看視頻,因此,社會上產(chǎn)生了很多低頭族.某研究人員對該地區(qū)18∽50歲的5000名居民在月流量的使用情況上做出調(diào)查,所得結果統(tǒng)計如下圖所示:
(Ⅰ)以頻率估計概率,若在該地區(qū)任取3位居民,其中恰有位居民的月流量的使用情況
在300M∽400M之間,求的期望;
(Ⅱ)求被抽查的居民使用流量的平均值;
(Ⅲ)經(jīng)過數(shù)據(jù)分析,在一定的范圍內(nèi),流量套餐的打折情況與其日銷售份數(shù)成線性相關
關系,該研究人員將流量套餐的打折情況與其日銷售份數(shù)的結果統(tǒng)計如下表所示:
折扣 | 1折 | 2折 | 3折 | 4折 | 5折 |
銷售份數(shù) | 50 | 85 | 115 | 140 | 160 |
試建立關于的的回歸方程.
附注:回歸方程中斜率和截距的最小二乘估計公式分別為:
,
【答案】(Ⅰ)0.75;(Ⅱ)369M;(Ⅲ) .
【解析】試題分析:(I)直接根據(jù)二項分布的期望公式求解即可;(II)根據(jù)頻率分布直方圖中數(shù)據(jù),每組數(shù)據(jù)中間值與縱坐標的乘積之和即是被抽查的居民使用流量的平均值;(Ⅲ)先根據(jù)平均值公式求出樣本中心點的坐標,利用公式求出,樣本中心點坐標代入回歸方程可得,從而可得結果.
試題解析:(Ⅰ)依題意, ∽,故;
(Ⅱ)依題意,所求平均數(shù)為故所用流量的平均值為;
(Ⅲ)由題意可知,
,
,
所以, 關于的回歸方程為: .
【方法點晴】本題主要考查二項分布的期望公式、直方圖的應用和線性回歸方程的求法,屬于難題.求回歸直線方程的步驟:①依據(jù)樣本數(shù)據(jù)畫出散點圖,確定兩個變量具有線性相關關系;②計算的值;③計算回歸系數(shù);④寫出回歸直線方程為; 回歸直線過樣本點中心是一條重要性質,利用線性回歸方程可以估計總體,幫助我們分析兩個變量的變化趨勢.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓C:(a>b>0)的左、右焦點分別為F1,F2,P為橢圓上一點(在x軸上方),連結PF1并延長交橢圓于另一點Q,設=λ.
(1)若點P的坐標為(1,),且△PQF2的周長為8,求橢圓C的方程;
(2)若PF2垂直于x軸,且橢圓C的離心率e∈[,],求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點在圓上, 的坐標分別為, ,線段的垂直平分線交線段于點
(1)求點的軌跡的方程;
(2)設圓與點的軌跡交于不同的四個點,求四邊形的面積的最大值及相應的四個點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(I)求棱錐C-ADE的體積;
(II)求證:平面ACE⊥平面CDE;
(III)在線段DE上是否存在一點F,使AF∥平面BCE?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為, 是曲線與直線: ()的交點(異于原點).
(1)寫出, 的直角坐標方程;
(2)求過點和直線垂直的直線的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為常數(shù), 為自然對數(shù)的底數(shù).
(1)若在區(qū)間上的最大值為,求的值;
(2)當時,判斷方程是否有實根?若無實根請說明理由,若有實根請給出根的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋子里有編號為的五個球,某位教師從袋中任取兩個不同的球. 教師把所取兩球編號的和只告訴甲,其乘積只告訴乙,讓甲、乙分別推斷這兩個球的編號.
甲說:“我無法確定.”
乙說:“我也無法確定.”
甲聽完乙的回答以后,甲又說:“我可以確定了.”
根據(jù)以上信息, 你可以推斷出抽取的兩球中
A. 一定有3號球 B. 一定沒有3號球 C. 可能有5號球 D. 可能有6號球
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=-f′(0)ex+2x,點P為曲線y=f(x)在點(0,f(0))處的切線l上的一點,點Q在曲線y=ex上,則|PQ|的最小值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com