【題目】

一個(gè)盒子里裝有三張卡片,分別標(biāo)記有數(shù)字1,2,3,這三張卡片除標(biāo)記的數(shù)字外完全相同.隨機(jī)有放回地抽取3次,每次抽取1張,將抽取的卡片上的數(shù)字依次記為.

1)求抽取的卡片上的數(shù)字滿(mǎn)足的概率;

2)求抽取的卡片上的數(shù)字不完全相同的概率.

【答案】127;(2.

【解析】

試題分析:本題主要考查事件與概率.

1)列出基本事件的數(shù)目和事件的數(shù)目,故可求出所要求的概率;

2)可先求出對(duì)立面的概率,用 相減即可得到所要求的概率.

試題解析:(1)由題意,隨機(jī)有放回的抽取次,基本事情, 共有 個(gè)

包含三個(gè)基本事件: 對(duì)應(yīng)的概率.

2不完全相同的對(duì)立事件是完全相同完全相同包含三個(gè)基本事件:

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分圖象如圖所示,其中A,B兩點(diǎn)之間的距離為5,則f(x)的解析式是(

A.y=2sin( x+
B.y=2sin( x+
C.y=2sin( x+
D.y=2sin( x+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中, 平面,底面為矩形, ,該四棱錐的外接球的體積為,則到平面的距離為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)試確定的取值范圍,使得函數(shù)上為單調(diào)函數(shù);

(2)若為自然數(shù),則當(dāng)取哪些值時(shí),方程上有三個(gè)不相等的實(shí)數(shù)根,并求出相應(yīng)的實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩(shī)詞知識(shí)競(jìng)賽為主的《中國(guó)詩(shī)詞大會(huì)》火爆熒屏。將中學(xué)組和大學(xué)組的參賽選手按成績(jī)分為優(yōu)秀、良好、一般三個(gè)等級(jí),隨即從中抽取了100名選手進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級(jí)人數(shù)的條形圖.

(Ⅰ)若將一般等級(jí)和良好等級(jí)合稱(chēng)為合格等級(jí),根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有95%的把握認(rèn)為選手成績(jī)“優(yōu)秀”與文化程度有關(guān)?

注:其中.

(Ⅱ)在優(yōu)秀等級(jí)的選手中取6名,依次編號(hào)為1,2,3,4,5,6,在良好等級(jí)的選手中取6名,依次編號(hào)為1,2,3,4,5,6,在選出的6名優(yōu)秀等級(jí)的選手中任取一名,記其編號(hào)為,在選出的6名良好等級(jí)的選手中任取一名,記其編號(hào)為,求使得方程組有唯一一組實(shí)數(shù)解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,若函數(shù)滿(mǎn)足:對(duì)于給定的 ,存在,使得成立,那么稱(chēng)具有性質(zhì).

1)函數(shù) 是否具有性質(zhì)?說(shuō)明理由;

2)已知函數(shù)具有性質(zhì),求的最大值;

3)已知函數(shù)的定義域?yàn)?/span>,滿(mǎn)足,且的圖像是一條連續(xù)不斷的曲線,問(wèn):是否存在正整數(shù)n,使得函數(shù)具有性質(zhì),若存在,求出這樣的n的取值集合;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C ab>0)的焦距為,且橢圓C過(guò)點(diǎn)A1, ),

(Ⅰ)求橢圓C的方程;

(Ⅱ)若O是坐標(biāo)原點(diǎn),不經(jīng)過(guò)原點(diǎn)的直線L:y=kx+m與橢圓交于兩不同點(diǎn)P(x1,y1),Q(x2,y2),且y1y2=k2x1x2,求直線L的斜率k;

(Ⅲ)在(Ⅱ)的條件下,求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且滿(mǎn)足Sn=2﹣an , n=1,2,3,….
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿(mǎn)足b1=1,且bn+1=bn+an , 求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)cn=n(3﹣bn),求數(shù)列{cn}的前n項(xiàng)和為T(mén)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2acosB=2c﹣b,若O是△ABC外接圓的圓心,且 ,則m=

查看答案和解析>>

同步練習(xí)冊(cè)答案