【題目】海州市六一兒童節(jié)期間在婦女兒童活動中心舉行小學(xué)生“海州杯”圍棋比賽,規(guī)則如下:甲、乙兩名選手比賽時,每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對方多2分或賽滿6局時比賽結(jié)束.設(shè)某校選手甲與另一選手乙比賽時,甲每局獲勝的概率皆為,且各局比賽勝負(fù)互不影響,已知第二局比賽結(jié)束時比賽停止的概率為.

(1)求的值;

(2)設(shè)表示比賽停止時已比賽的局?jǐn)?shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

【答案】(1);(2)詳見解析.

【解析】試題分析:(1)依據(jù)題設(shè)比賽結(jié)束時須滿足“甲連勝2局或乙連勝2局”且這兩事件互斥,可借助這一條件建立方程求出;(2)依據(jù)題設(shè)條件分別求出,,.再運(yùn)用隨機(jī)變量的分布列 數(shù)學(xué)期望公式求出.

試題解析:

(1)依題意,當(dāng)甲連勝2局或乙連勝2局時,第二局比賽結(jié)束時比賽結(jié)束,

∴有,解得.

,∴.

(2)依題意知的所有可能值為2,4,6,

設(shè)每兩局比賽為一輪,則該輪結(jié)束時比賽停止的概率為,若該輪結(jié)束時比賽還將繼續(xù),則甲、乙在該輪中必是各得一分,此時,該輪比賽結(jié)果對下輪比賽是否停止沒有影響.

從而有,,

.

∴隨機(jī)變量的分布列為:

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直角梯形中,是邊長為2的等邊三角形,沿折起,使處,且;然后再將沿折起,使處,且面,在面的同側(cè)

() 求證:平面;

() 求平面與平面所構(gòu)成的銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機(jī)構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴(yán)重的城市和交通擁堵嚴(yán)重的城市分別隨機(jī)調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如圖:

(Ⅰ)根據(jù)莖葉圖,比較兩城市滿意度評分的平均值的大小及方差的大。ú灰缶唧w解答過程,給出結(jié)論即可);

(Ⅱ)若得分不低于80分,則認(rèn)為該用戶對此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對此種交通方式“不認(rèn)同”,請根據(jù)此樣本完成此列聯(lián)表,并局此樣本分析是否有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān);

(Ⅲ)若此樣本中的城市和城市各抽取1人,則在此2人中恰有一人認(rèn)可的條件下,此人來自城市的概率是多少?

合計

認(rèn)可

不認(rèn)可

合計

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點是, ,且橢圓經(jīng)過點.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若過橢圓的左焦點且斜率為1的直線與橢圓交于兩點,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市英才中學(xué)的一個社會實踐調(diào)查小組,在對中學(xué)生的良好“光盤習(xí)慣”的調(diào)查中,隨機(jī)發(fā)放了120份問卷,對收回的120份有效問卷進(jìn)行統(tǒng)計,得到如下列聯(lián)表:

做不到光盤

能做到光盤

合計

45

10

55

30

15

45

合計

75

25

100

(1)現(xiàn)已按是否能做到光盤分層從45份女生問卷中抽取9份問卷,若從這9份問卷中隨機(jī)抽取4份,并記其中能做到光盤的問卷的份數(shù)為,試求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(2)如果認(rèn)為良好“光盤習(xí)慣”與性別有關(guān)犯錯誤的概率不超過,那么根據(jù)臨界值表最精確的的值應(yīng)為多少?請說明理由.

附:獨立性檢驗統(tǒng)計量,其中.

獨立性檢驗臨界表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為橢圓的左焦點,且兩焦點與短軸的一個頂點構(gòu)成一個等邊三角形,直線與橢圓有且僅有一個交點.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線軸交于,過點的直線與橢圓交于兩不同點 ,若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在測試中,客觀題難度的計算公式為,其中為第題的難度, 為答對該題的人數(shù), 為參加測試的總?cè)藬?shù).現(xiàn)對某校高三年級120名學(xué)生進(jìn)行一次測試,共5道客觀題.測試前根據(jù)對學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:

題號

1

2

3

4

5

考前預(yù)估難度

0.9

0.8

0.7

0.6

0.4

測試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號后統(tǒng)計各題的作答情況,如下表所示(“√”表示答對,“×”表示答錯):

學(xué)生編號 題號

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

(Ⅰ)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實測的答對人數(shù)及相應(yīng)的實測難度填入下表,并估計這120名學(xué)生中第5題的實測答對人數(shù);

題號

1

2

3

4

5

實測答對人數(shù)

實測難度

(Ⅱ)從編號為155人中隨機(jī)抽取2人,求恰好有1人答對第5題的概率;

Ⅲ)定義統(tǒng)計量,其中為第題的實測難度, 為第題的預(yù)估難度.規(guī)定:若,則稱該次測試的難度預(yù)估合理,否則為不合理.判斷本次測試的難度預(yù)估是否合理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)當(dāng)時,求不等式的解集;

(Ⅱ)若, 恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案