(本題10分)已知函數(shù)
有極值.
(1)求
的取值范圍;
(2)若
在
處取得極值,且當(dāng)
時(shí),
恒成立,求
的取值范圍.
(1)
(2)
(1)∵
,∴
要使
有極值,則方程
有兩個(gè)實(shí)數(shù)解,
從而△=
,∴
.
(2)∵
在
處取得極值,
∴
,
∴
.
∴
,
∵
,
∴當(dāng)
時(shí),
,函數(shù)單調(diào)遞增,
當(dāng)
時(shí),
,函數(shù)單調(diào)遞減.
∴
時(shí),
在
處取得最大值
,
∵
時(shí),
恒成立,
∴
,即
,
∴
或
,即
的取值范圍是
.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
設(shè)
m為實(shí)數(shù),函數(shù)
,
.
(1)若
≥4,求
m的取值范圍;
(2)當(dāng)
m>0時(shí),求證
在
上是單調(diào)遞增函數(shù);
(3)若
對(duì)于一切
,不等式
≥1恒成立,求實(shí)數(shù)
m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)
處取得極值.
(1)求實(shí)數(shù)a的值,并判斷
上的單調(diào)性;
(2)若數(shù)列
滿足
;
(3)在(2)的條件下,
記
求證:
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知
f(
x)=
x3+
mx2-
x+2(
m∈
R)
如果函數(shù)的單調(diào)減區(qū)間恰為(-
,1),求函數(shù)
f(
x)的解析式;
(2)若
f(
x)的導(dǎo)函數(shù)為
f '(
x),對(duì)任意
x∈(0,+∞),不等式
f '(
x)≥2
xlnx-1恒成立,求實(shí)數(shù)
m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知:函數(shù)
(
是常數(shù))是奇函數(shù),且滿足
,
(Ⅰ)求
的值;
(Ⅱ)試判斷函數(shù)
在區(qū)間
上的單調(diào)性并說(shuō)明理由;
(Ⅲ)試求函數(shù)
在區(qū)間
上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
設(shè)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132945887289.gif" style="vertical-align:middle;" />,
的導(dǎo)函數(shù)為
,且對(duì)任意正數(shù)
均有
,
(1)判斷函數(shù)
在
上的單調(diào)性;
(2)設(shè)
,比較
與
的大小,并證明你的結(jié)論;
(3)設(shè)
,若
,比較
與
的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
設(shè)
,則
等于( )
A. | B. | C.0 | D.以上都不是 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)
的圖象經(jīng)過(guò)A(0,1),且在該點(diǎn)處的切線與直線
平行.
(1)求b與c的值;
(2)求
上的最大值與最小值分別為
M(
a),
N(
a),求
F(
a)=
M(
a)-
N(
a)的表達(dá)式.
(3)在)(2)的條件下,當(dāng)a的區(qū)間
上變化時(shí),證明:
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
設(shè)函數(shù)
,它們的圖象在
軸上的公共點(diǎn)處有公切線,則當(dāng)
時(shí),
與
的大小關(guān)系是 ( )
查看答案和解析>>