【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 ,(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ= sinθ+cosθ,曲線C3的極坐標(biāo)方程是θ= . (Ⅰ)求曲線C1的極坐標(biāo)方程;
(Ⅱ)曲線C3與曲線C1交于點(diǎn)O,A,曲線C3與曲線C2曲線交于點(diǎn)O,B,求|AB|.
【答案】解:(Ⅰ)曲線C1的參數(shù)方程為 ,(θ為參數(shù)),普通方程為(x﹣3)2+y2=9,x2+y2﹣6x=0, 由x=ρcosθ,y=ρsinθ,得ρ2﹣6ρcosθ=0,∴曲線C1的極坐標(biāo)方程為ρ=6cosθ;
(Ⅱ)設(shè)點(diǎn)A的極坐標(biāo)為(ρ1 , ),點(diǎn)B的極坐標(biāo)為(ρ2 , ),則ρ1=6cos =3,ρ2= sin +cos =2,
所以AB|=|ρ1﹣ρ2|=1
【解析】(Ⅰ)先把參數(shù)方程轉(zhuǎn)化為普通方程,利用由x=ρcosθ,y=ρsinθ可得極坐標(biāo)方程;(Ⅱ)利用|AB|=|ρ1﹣ρ2|即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,,,,.
(1)求直線與平面所成角的正弦值.
(2)在棱上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.若直線l的極坐標(biāo)方程為 ,曲線C的極坐標(biāo)方程為:ρsin2θ=cosθ,將曲線C上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的一半,縱坐標(biāo)不變,然后再向右平移一個(gè)單位得到曲線C1 .
(Ⅰ)求曲線C1的直角坐標(biāo)方程;
(Ⅱ)已知直線l與曲線C1交于A,B兩點(diǎn),點(diǎn)P(2,0),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足acosC=b﹣ c. (Ⅰ)求角A的大。
(Ⅱ)若B= ,AC=4,求BC邊上的中線AM的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求圓的直角坐標(biāo)方程(化為標(biāo)準(zhǔn)方程)及曲線的普通方程;
(2)若圓與曲線的公共弦長(zhǎng)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正四面體D﹣ABC(所有棱長(zhǎng)均相等的三棱錐),P、Q、R分別為AB、BC、CA上的點(diǎn),AP=PB, = =2,分別記二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角為α、β、γ,則( )
A.γ<α<β
B.α<γ<β
C.α<β<γ
D.β<γ<α
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于無(wú)窮數(shù)列,給出下列命題:
①若數(shù)列既是等差數(shù)列,又是等比數(shù)列,則數(shù)列是常數(shù)列.
②若等差數(shù)列滿足,則數(shù)列是常數(shù)列.
③若等比數(shù)列滿足,則數(shù)列是常數(shù)列.
④若各項(xiàng)為正數(shù)的等比數(shù)列滿足,則數(shù)列是常數(shù)列.
其中正確的命題個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車已成為一種時(shí)髦的新型環(huán)保交通工具,某共享單車公司為了拓展市場(chǎng),對(duì),兩個(gè)品牌的共享單車在編號(hào)分別為1,2,3,4,5的五個(gè)城市的用戶人數(shù)(單位:十萬(wàn))進(jìn)行統(tǒng)計(jì),得到數(shù)據(jù)如下:
城市品牌 | 1 | 2 | 3 | 4 | 5 |
品牌 | 3 | 4 | 12 | 6 | 8 |
品牌 | 4 | 3 | 7 | 9 | 5 |
(Ⅰ)若共享單車用戶人數(shù)超過(guò)50萬(wàn)的城市稱為“優(yōu)城”,否則稱為“非優(yōu)城”,據(jù)此判斷能否有的把握認(rèn)為“優(yōu)城”和共享單車品牌有關(guān)?
(Ⅱ)若不考慮其它因素,為了拓展市場(chǎng),對(duì)品牌要從這五個(gè)城市選擇三個(gè)城市進(jìn)行宣傳.
(i)求城市2被選中的概率;
(ii)求在城市2被選中的條件下城市3也被選中的概率.
附:參考公式及數(shù)據(jù)
0.15 | 0.10 | 0.05 | 0.025 | 0.005 | 0.001 | ||
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率e= , 原點(diǎn)到過(guò)A(a,0),B(0,﹣b)兩點(diǎn)的直線的距離是 .
(1)求橢圓的方程;
(2)已知直線y=kx+1(k≠0)交橢圓于不同的兩點(diǎn)E,F(xiàn),且E,F(xiàn)都在以B為圓心的圓上,求k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com