如圖,四棱錐P-ABCD中,PA⊥平面ABCD,E為BD的中點,G為PD的中點△DAB≌△DCB,EA=EB=AB=1,PA=
3
2
,連接CE并延長交AD于F.
(1)求證:AD⊥平面CFG;
(2)求三棱錐P-ABD外接球的體積.
(1)在△ABD中,∵E是BD的中點,
∴EA=EB=ED=AB=1,∴AE=
1
2
BD
,
可得∠BAD=
π
2
,且∠ABE=∠AEB=
π
3

∵△DAB≌△DCB,
∴△EAB≌△ECB,
從而有∠FED=∠FEA=∠AEB=
π
3

故EF⊥AD,AF=FD,
又∵△PAD,中,PG=GD,
∴FG是△PAD的中位線,
∴FGPA.
又PA⊥平面ABCD,
∴FG⊥平面ABCD,
∵AD?平面ABCD,
∴GF⊥AD,
又∵EF,F(xiàn)G是平面CFG內(nèi)的相交直線,
∴AD⊥平面CFG.
(2)∵PA、PB、PD兩兩垂直,可補(bǔ)形成長方體,
其外接球2R=
12+(
3
)
2
+(
3
2
)
2
=
5
2
,
∴R=
5
4
,
V=
4
3
πR3=
125π
48
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,兩個全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB且AM=FN,求證:MN平面BCE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,點P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,則PB與AC所成的角是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(理)如圖,四棱錐P-ABCD的底面是矩形,PA⊥面ABCD,PA=2
19
,AB=8,BC=6,點E是PC的中點,F(xiàn)在AD上且AF:FD=1:2.建立適當(dāng)坐標(biāo)系.
(1)求EF的長;
(2)證明:EF⊥PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ABC,AD=DC=CB=1,∠ABC═60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求證:BC⊥平面ACFE;
(2)求二面角A-BF-C的平面角的余弦值;
(3)若點M在線段EF上運(yùn)動,設(shè)平MAB與平FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F(xiàn),G分別是PC,PD,BC的中點.
(1)求證:平面PAB平面EFG;
(2)在線段PB上確定一點Q,使PC⊥平面ADQ,并給出證明;
(3)證明平面EFG⊥平面PAD,并求點D到平面EFG的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點,PA⊥平面ABC,則四面體P-ABC的四個面中,直角三角形的個數(shù)有( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,AB是圓O的直徑,PA垂直于圓O所在的平面,M是圓周上異于A、B的任意一點,AN⊥PM,點N為垂足,求證:AN⊥平面PBM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓周上的一點.
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求三棱錐P-ABC的體積.

查看答案和解析>>

同步練習(xí)冊答案