已知拋物線方程為y2=2px(p>0),直線l:x+y=m過(guò)拋物線的焦點(diǎn)且被拋物線截得的弦長(zhǎng)為3,求p的值.
分析:由于直線l:x+y=m過(guò)拋物線的焦點(diǎn),得到直線l的方程,再將l的方程代入拋物線方程y2=2px,得y2+2py-p2=0;
設(shè)A(x1,y1),B(x2,y2),由根與系數(shù)的關(guān)系得y1+y2,y1y2;再由弦長(zhǎng)公式|AB|=x1+x2+p,可求得|AB|=4p=3,從而求得p的值.
解答:解:由直線l過(guò)拋物線的焦點(diǎn)F(
p
2
,0)
,得直線l的方程為x+y=
p
2

x+y=
p
2
y2=2px
消去,得y2+2py-p2=0.
由題意得△=(2p)2+4p2>0,y1+y2=-2p,y1y2=-p2
設(shè)直線與拋物線交于A(x1,y1),B(x2,y2),
|AB|=x1+x2+p=
p
2
-y1+
p
2
-y2+p=2p-(y1+y2)=4p
,
解得p=
3
4

故p的值為
3
4
點(diǎn)評(píng):本題考查了拋物線的幾何性質(zhì)以及弦長(zhǎng)公式的應(yīng)用,也考查了一定的計(jì)算能力,解題時(shí)要靈活運(yùn)用公式,正確解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線方程為y2=2px(p>0).
(1)若點(diǎn)(2,2
2
)
在拋物線上,求拋物線的焦點(diǎn)F的坐標(biāo)和準(zhǔn)線l的方程;
(2)在(1)的條件下,若過(guò)焦點(diǎn)F且傾斜角為60°的直線m交拋物線于A、B兩點(diǎn),點(diǎn)M在拋物線的準(zhǔn)線l上,直線MA、MF、MB的斜率分別記為kMA、kMF、kMB,求證:kMA、kMF、kMB成等差數(shù)列;
(3)對(duì)(2)中的結(jié)論加以推廣,使得(2)中的結(jié)論成為推廣后命題的特例,請(qǐng)寫(xiě)出推廣命題,并給予證明.
說(shuō)明:第(3)題將根據(jù)結(jié)論的一般性程度給予不同的評(píng)分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線方程為y2=4x,過(guò)Q(2,0)作直線l.
①若l與x軸不垂直,交拋物線于A、B兩點(diǎn),是否存在x軸上一定點(diǎn)E(m,0),使得∠AEQ=∠BEQ?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由?
②若L與X軸垂直,拋物線的任一切線與y軸和L分別交于M、N兩點(diǎn),則自點(diǎn)M到以QN為直徑的圓的切線長(zhǎng)|MT|為定值,試證之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線方程為y2=8x.直線l1過(guò)拋物線的焦點(diǎn)F,且傾斜角為45°,直線l1與拋物線相交于C、D兩點(diǎn),O為原點(diǎn).
(1)寫(xiě)出直線l1方程
(2)求CD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線方程為y2=2px(p>0).
(Ⅰ)若點(diǎn)(2,2
2
)在拋物線上,求拋物線的焦點(diǎn)F的坐標(biāo)和準(zhǔn)線l的方程;
(Ⅱ)在(Ⅰ)的條件下,若過(guò)焦點(diǎn)F且傾斜角為60°的直線m交拋物線于A、B兩點(diǎn),點(diǎn)M在拋物線的準(zhǔn)線l上,直線MA、MF、MB的斜率分別記為kMA、kMF、kMB,求證:kMA、kMF、kMB成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線方程為y2=4x,過(guò)點(diǎn)P(-2,0)的直線AB交拋物線于點(diǎn)A、B,若線段AB的垂直平分線交x軸于點(diǎn)Q(n,0),求n的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案