【題目】如圖,在三棱錐中,的中點(diǎn).

1)證明:

2)若點(diǎn)在線段上,且直線與平面所成角的正弦值為,求直線所成角的余弦值.

【答案】1)證明見解析過(guò)程;(2.

【解析】

1)利用勾股定理逆定理可以證明底面直角三角形的性質(zhì),結(jié)合側(cè)棱相等,可以確定是底面的垂線,進(jìn)而利用線面垂直的性質(zhì)進(jìn)行證明即可;

2)由(1)中的線面垂直關(guān)系,可以證明出平面和平面互相垂直,根據(jù)面面垂直的性質(zhì)定理,結(jié)合線面角的定義,可以求出的長(zhǎng),最后利用異面直線的定義進(jìn)行求解即可.

1)因?yàn)?/span>,所以有,所以三角形是直角三角形,而為斜邊的中點(diǎn).所以三角形的外心為點(diǎn),因?yàn)?/span>,所以點(diǎn)在底面的射影是底面的外心,因此平面,而平面,因此有;

2)由(1)可知:平面,而平面,所以平面平面,過(guò),垂足為,因?yàn)槠矫?/span>平面,所以平面,因?yàn)橹本€與平面所成角的正弦值為,所以,設(shè),

所以,因此由,因此有

,根據(jù),可得

(舍去),故,因此點(diǎn)是線段的中點(diǎn),取的中點(diǎn),連接,則有,所以是直線所成角(或補(bǔ)角),

因?yàn)?/span>,,所以,由余弦定理可知:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),

1)求函數(shù)fx)在x[1,2]上的最大值和最小值;

2)若對(duì)于任意x[1,2]都有fx)<m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若(2bccosAacosC

1)求角A;

2)若ABC的外接圓面積為π,求ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中,

1)若,且的極大值點(diǎn),求的取值范圍;

2)當(dāng)時(shí),方程有唯一實(shí)數(shù)根,求正數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�