已知f(x)=
x2,x>0
π,x=0
0,x<0
,則f[f(0)]的值是( 。
A、0B、π
C、π2D、4
考點(diǎn):函數(shù)的值
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用分段函數(shù)的性質(zhì)求解.
解答: 解:∵f(x)=
x2,x>0
π,x=0
0,x<0
,
∴f(0)=π,
f[f(0)]=f(π)=π2
故選:C.
點(diǎn)評(píng):本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意分段函數(shù)的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
8
+
y2
4
=1
的左焦點(diǎn)為F,直線l:x=-4與x軸的交點(diǎn)是圓C的圓心,圓C恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O,設(shè)G是圓C上任意一點(diǎn).
(Ⅰ)求圓C的方程;
(Ⅱ)若直線FG與直線l交于點(diǎn)T,且G為線段FT的中點(diǎn),求直線FG被圓C所截得的弦長(zhǎng);
(Ⅲ)在平面上是否存在一點(diǎn)P,使得
GF
GP
=
1
2
?若存在,求出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

y=loga(x+2)+3過(guò)定點(diǎn)
 
;y=ax+2+3過(guò)定點(diǎn)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|x=1+a2,a∈N*},P={x|x=a2-2a+2,a∈N*},則集合M與P的關(guān)系是(  )
A、M?PB、P?M
C、M=PD、M?P且P?M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不用計(jì)算器求下列各式的值
(1)(2
7
9
)
1
2
+0.1-2+(2
10
27
)-
2
3
-3×π0+
37
48

(2)(lg2)2+lg2•lg5+lg5+log3
427
3
)+(
1
3
)log32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|2≤x<4},B={x|3x-7≥8-2x},求A∪B,A∩B,∁R(A∩B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

含有三個(gè)實(shí)數(shù)的集合既可表示成{a,
b
a
,1},又可表示成{a2,a+b,0},則a2015+b2016=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
=(1,1),
b
=(-1,1),則向量-2
a
-
b
的坐標(biāo)是( 。
A、(-1,-3)
B、(-3,1)
C、(-1,0)
D、(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠ADC=60°,AD=AM=1,PC=2,M為PD的中點(diǎn).
(1)證明PB∥平面ACM;
(2)求直線AM與直線PC所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案