已知實數(shù)x,y滿足不等式組,若目標函數(shù)z=y(tǒng)-ax取得最大值時的唯一最優(yōu)解是(1,3),求實數(shù)a的取值范圍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

某工廠有A、B兩種配件生產(chǎn)甲、乙兩種產(chǎn)品,每生產(chǎn)一種甲產(chǎn)品使用4個A配件耗時1h,每生產(chǎn)一件乙產(chǎn)品使用4個B配件耗時2h,該廠每天最多可從配件廠獲得16個A配件和12個B配件,按每天8h計算,若生產(chǎn)一件甲產(chǎn)品獲利2萬元,生產(chǎn)一件乙產(chǎn)品獲利3萬元,采用哪種生產(chǎn)安排利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2013•湖北)假設(shè)每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機變量.記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p0
(1)求p0的值;
(參考數(shù)據(jù):若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)
(2)某客運公司用A,B兩種型號的車輛承擔甲、乙兩地間的長途客運業(yè)務(wù),每車每天往返一次,A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運成本分別為1600元/輛和2400元/輛.公司擬組建一個不超過21輛車的客運車隊,并要求B型車不多于A型車7輛.若每天要以不小于p0的概率運完從甲地去乙地的旅客,且使公司從甲地去乙地的營運成本最小,那么應配備A型車、B型車各多少輛?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

假設(shè)每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機變量.記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p0.
(1)求p0的值;(參考數(shù)據(jù):若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4,P(μ-3σ<X≤μ+3σ)=0.997 4)
(2)某客運公司用A、B兩種型號的車輛承擔甲、乙兩地間的長途客運業(yè)務(wù),每車每天往返一次.A、B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運成本分別為1 600元/輛和2 400元/輛.公司擬組建一個不超過21輛車的客運車隊,并要求B型車不多于A型車7輛.若每天要以不小于p0的概率運完從甲地去乙地的旅客,且使公司從甲地去乙地的營運成本最小,那么應配備A型車、B型車各多少輛?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知x,y滿足約束條件,試求解下列問題.
(1)z=的最大值和最小值;
(2)z=的最大值和最小值;
(3)z=|3x+4y+3|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知關(guān)于的二次函數(shù)
(1)設(shè)集合分別從集合中隨機取一個數(shù)作為,求函數(shù)在區(qū)間上是增函數(shù)的概率.
(2)設(shè)點(a,b)是區(qū)域內(nèi)的隨機點,求函數(shù)在區(qū)間上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

若直線上存在點滿足約束條件,則實數(shù)的最大值為           

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

設(shè)、滿足條件,則的最小值是               

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知a>b>0,c>d>0,m=-,n=,則m與n的大小關(guān)系是(  )

A.m<nB.m>nC.m≥nD.m≤n

查看答案和解析>>

同步練習冊答案