【題目】已知橢圓,與軸的正半軸交于點,右焦點, 為坐標原點,且

(1)求橢圓的離心率

(2)已知點,過點任意作直線與橢圓交于兩點,設(shè)直線的斜率,若,求橢圓的方程.

【答案】(1);(2).

【解析】試題分析:(1)tan∠PFO=可得=,c=b,a==b即可得出(2)直線斜率不為0時,設(shè)出直線方程ty=x﹣1,設(shè)C(x1,y1),D(x2,y2).聯(lián)立,化為:(t2+3)y2+2ty+1﹣3b2=0,∵k1+k2=2,∴+=2,根據(jù)韋達定理代入求解即可,斜率為0 時也成立

試題解析:

(1)∵tan∠PFO=,∴=,∴c=b,a==b.

==

(2)直線l的斜率不為0時,設(shè)直線l的方程為:ty=x﹣1.設(shè)C(x1,y1),D(x2,y2).

聯(lián)立,化為:(t2+3)y2+2ty+1﹣3b2=0,

y1+y2=,y1y2=,

∵k1+k2=2,∴+=2,

化為:(y1﹣2)(ty2﹣2)+(y2﹣2)(ty1﹣2)=2(ty1﹣2)(ty2﹣2),

即:ty1y2=y1+y2

∴t=,對t∈R都成立.

化為:b2=1,

直線l的斜率為0時也成立,

∴b2=1,

∴橢圓C的方程為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)在區(qū)間上的最小值;

(Ⅱ)證明:對任意, ,都有成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), 處取得極值,且,曲線處的切線與直線垂直.

(Ⅰ)求的解析式;

(Ⅱ)證明關(guān)于的方程至多只有兩個實數(shù)根(其中的導函數(shù), 是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,則稱點為平面上單調(diào)格點:設(shè)

求從區(qū)域中任取一點,而該點落在區(qū)域上的概率;

求從區(qū)域中的所有格點中任取一點,而該點是區(qū)域上的格點的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)m個正數(shù)a1 , a2 , …,am(m≥4,m∈N*)依次圍成一個圓圈.其中a1 , a2 , a3 , …ak1 , ak(k<m,k∈N*)是公差為d的等差數(shù)列,而a1 , am , am1 , …,ak+1 , ak是公比為2的等比數(shù)列.
(1)若a1=d=2,k=8,求數(shù)列a1 , a2 , …,am的所有項的和Sm
(2)若a1=d=2,m<2015,求m的最大值;
(3)是否存在正整數(shù)k,滿足a1+a2+…+ak1+ak=3(ak+1+ak+2+…+am1+am)?若存在,求出k值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】互不相等的三個正數(shù)x1 , x2 , x3成等比數(shù)列,且點P1(logax1 , logby1)P2(logax2 , logby2),P3(logax3 , logby3)共線(a>0且a≠0,b>且b≠1)則y1 , y2 , y3成(
A.等差數(shù)列,但不等比數(shù)列
B.等比數(shù)列而非等差數(shù)列
C.等比數(shù)列,也可能成等差數(shù)列
D.既不是等比數(shù)列,又不是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c. , ,且
(Ⅰ)求A的大;
(Ⅱ)若a=1, .求SABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,小明想將短軸長為2,長軸長為4的一個半橢圓形紙片剪成等腰梯形ABDE,且梯形ABDE內(nèi)接于半橢圓,DEAB,AB為短軸,OC為長半軸

(1)求梯形ABDE上底邊DE與高OH長的關(guān)系式;

(2)若半橢圓上到H的距離最小的點恰好為C點,求底邊DE的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市對創(chuàng)“市級示范性學!钡募、乙兩所學校進行復查驗收,對辦學的社會滿意度一項評價隨機訪問了20為市民,這20位市民對這兩所學校的評分(評分越高表明市民的評價越好)的數(shù)據(jù)如下:

甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;

乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.

檢查組將成績分成了四個等級:成績在區(qū)間的為等,在區(qū)間的為等,在區(qū)間的為等,在區(qū)間等.

(1)請用莖葉圖表示上面的數(shù)據(jù),并通過觀察莖葉圖,對兩所學校辦學的社會滿意度進行比較,寫出兩個統(tǒng)計結(jié)論;

(2)根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求乙校得分的等級高于甲校得分的等級的概率.

查看答案和解析>>

同步練習冊答案