【題目】如圖,在三棱錐中,平面 平面,點(diǎn)上,

(Ⅰ)求證:

(Ⅱ)若二面角的余弦值為,求三棱錐的體積.

【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ)

【解析】試題分析:(Ⅰ)找準(zhǔn)突破方向,證明平面即可,再根據(jù)條件分析,利用面面垂直得線線垂直及平面幾何知識(shí)即可證出;(Ⅱ)建系,利用空間向量解決問(wèn)題,設(shè)設(shè),計(jì)算二面角即可.

試題解析:(Ⅰ)取的中點(diǎn),連接

因?yàn)?/span>,所以,

又平面平面,平面平面平面,

所以平面,

平面,所以

中, ,所以,

由角平分線定理,得,

,所以,

又因?yàn)?/span>平面平面,

所以平面,

平面,所以

(Ⅱ)在中, ,

由余弦定理得,所以,即,

所以,所以,

結(jié)合(Ⅰ)知, 兩兩垂直,以為原點(diǎn),分別以向量的方向?yàn)?/span>軸、軸、軸的正方向建立空間直角坐標(biāo)系(如圖),設(shè),

,

所以,

設(shè)是平面的一個(gè)法向量,

,整理,得

,得

因?yàn)?/span>平面,所以是平面的一個(gè)法向量.

又因?yàn)槎娼?/span>的余弦值為,

所以,解得 (舍去),

平面,A所以是三棱錐的高,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=log2(4x)log2(2x),且x滿足4﹣17x+4x2≤0,求f(x)的最值,并求出取得最值時(shí),對(duì)應(yīng)f(x)的 值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列表示錯(cuò)誤的是(
A.0??
B.??{1,2}
C.{(x,y)| ={3,4}
D.若A?B,則A∩B=A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)在區(qū)間有唯一零點(diǎn),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線兩點(diǎn),交軸于點(diǎn)軸的距離比.

(Ⅰ)求的方程;

(Ⅱ)若,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若有唯一解,求實(shí)數(shù)的值;

(Ⅱ)證明:當(dāng)時(shí),

(附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎(jiǎng)促銷活動(dòng),消費(fèi)每超過(guò)600元(含600元),均可抽獎(jiǎng)一次,抽獎(jiǎng)方案有兩種,顧客只能選擇其中的一種.

方案一:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,一次性摸出3個(gè)球,其中獎(jiǎng)規(guī)則為:若摸到3個(gè)紅球,享受免單優(yōu)惠;若摸出2個(gè)紅球則打6折,若摸出1個(gè)紅球,則打7折;若沒(méi)摸出紅球,則不打折.

方案二:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.

(1)若兩個(gè)顧客均分別消費(fèi)了600元,且均選擇抽獎(jiǎng)方案一,試求兩位顧客均享受免單優(yōu)惠的概率;

(2)若某顧客消費(fèi)恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎(jiǎng)方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩名同學(xué)參加定點(diǎn)投籃測(cè)試,已知兩人投中的概率分別是,假設(shè)兩人投籃結(jié)果相互沒(méi)有影響,每人各次投球是否投中也沒(méi)有影響.

(Ⅰ)若每人投球3次(必須投完),投中2次或2次以上,記為達(dá)標(biāo),求甲達(dá)標(biāo)的概率;

(Ⅱ)若每人有4次投球機(jī)會(huì),如果連續(xù)兩次投中,則記為達(dá)標(biāo).達(dá)標(biāo)或能斷定不達(dá)標(biāo),則終止投籃.記乙本次測(cè)試投球的次數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論正確的個(gè)數(shù)是(
①命題“所有的四邊形都是矩形”是特稱命題;
②命題“x∈R,x2+2<0”是全稱命題;
③若p:x∈R,x2+4x+4≤0,則q:x∈R,x2+4x+4≤0是全稱命題.
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案