已知雙曲線的中心在原點且一個焦點是F(
7
,0),直線y=x-1與其相交于M,N兩點.若MN的中點橫坐標(biāo)為-
2
3
,則此雙曲線的方程為
 
分析:先設(shè)出雙曲線的方程,然后與直線方程聯(lián)立方程組,經(jīng)消元得二元一次方程,再根據(jù)韋達(dá)定理及MN中點的橫坐標(biāo)可得a、b的一個方程,又雙曲線中有c2=a2+b2,則另得a、b的一個方程,最后解a、b的方程組即得雙曲線方程.
解答:解:設(shè)雙曲線方程為
x2
a2
-
y2
b2
=1.
將y=x-1代入
x2
a2
-
y2
b2
=1,整理得(b2-a2)x2+2a2x-a2-a2b2=0.
由韋達(dá)定理得x1+x2=
2a2
a2-b2
,則
x1+x2
2
=
a2
a2-b2
=-
2
3

又c2=a2+b2=7,解得a2=2,b2=5,
所以雙曲線的方程是
x2
2
-
y2
5
=1

故答案為:
x2
2
-
y2
5
=1
點評:本題主要考查代數(shù)方法解決幾何問題,同時考查雙曲線的標(biāo)準(zhǔn)方程與性質(zhì)等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標(biāo)軸上,一條漸近線方程為y=x,且過點(4,-
10
)
,A點坐標(biāo)為(0,2),則雙曲線上距點A距離最短的點的坐標(biāo)是
7
,1)
7
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點且一個焦點為F(,0),直線y=x-1與其相交于M、N兩點,MN中點的橫坐標(biāo)為

-,則雙曲線的方程是(    )

A.-=1                           B.-=1

C.-=1                           D.-=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點且一個焦點為F(,0),直線y=x-1與其相交于M、N兩點,MN中點的橫坐標(biāo)為-,則雙曲線的方程是(    )

A.-=1                           B.-=1

C.-=1                           D.-=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省寧波市鄞州高級中學(xué)高二(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知雙曲線的中心在原點且一個焦點是F(,0),直線y=x-1與其相交于M,N兩點.若MN的中點橫坐標(biāo)為,則此雙曲線的方程為   

查看答案和解析>>

同步練習(xí)冊答案