【題目】(2015·湖南)如下圖,直三棱柱ABCA1B1C1的底面是邊長為2的正三角形,E、F分別是BC、CC1的中點(diǎn).

(1)證明:平面AEF⊥平面B1BCC1

(2)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐FAEC的體積.

【答案】(1)見解析(2)

【解析】(1)證明:如圖,因?yàn)槿庵?/span>ABCA1B1C1是直三棱柱,所以AE⊥BB1,

E是正三角形ABC的邊BC的中點(diǎn),所以AE⊥BC,因此AE⊥平面B1BCC1,又AE平面AEF,所以平面AEF⊥平面B1BCC1.

(2)設(shè)AB的中點(diǎn)為D,連接A1D,CD,因?yàn)?/span>△ABC是正三角形,所以CD⊥AB,又三棱柱ABCA1B1C1是直三棱柱,所以CD⊥AA1,因此CD⊥平面A1ABB1,于是∠CA1D為直線A1C與平面A1ABB1所成的角,由題設(shè)知∠CA1D45°,

所以A1DCDAB,在Rt△AA1D中,AA1,所以FCAA1,故三棱錐FAEC的體積V

SAEC×FC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求證:不論m取什么實(shí)數(shù),直線(2m-1)x+(m+3)y-(m-11)=0都經(jīng)過一個(gè)定點(diǎn),并求出這個(gè)定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5

1)請畫出上表數(shù)據(jù)的散點(diǎn)圖.

2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.

3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤.

(參考數(shù)值:3×2.54×35×46×4.566.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=aln(x﹣1),g(x)=x2+bx,F(xiàn)(x)=f(x+1)﹣g(x),其中a,b∈R.
(1)若y=f(x)與y=g(x)的圖象在交點(diǎn)(2,k)處的切線互相垂直,求a,b的值;
(2)若x=2是函數(shù)F(x)的一個(gè)極值點(diǎn),x0和1是F(x)的兩個(gè)零點(diǎn),且x0∈(n,n+1)n∈N,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合A是由滿足以下性質(zhì)的函數(shù)fx)組成的:對于任意x≥0,fx∈[-24]fx)在[0,+∞)上是增函數(shù).

(Ⅰ)試判斷x≥0)是否屬于集合A,并說明理由;

(Ⅱ)對于(Ⅰ)中你認(rèn)為屬于集合A的函數(shù)fx),證明:對于任意的x≥0,都有fx+fx+2<2fx+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(3﹣a)x﹣2+a﹣2lnx(a∈R)
(1)若函數(shù)y=f(x)在區(qū)間(1,3)上單調(diào),求a的取值范圍;
(2)若函數(shù)g(x)=f(x)﹣x在(0, )上無零點(diǎn),求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別是BB1 , CD的中點(diǎn),求證:平面ADE⊥平面A1FD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=log44x+1+kxgx=log4a2xa),其中fx)是偶函數(shù).

1)求實(shí)數(shù)k的值;

2)求函數(shù)gx)的定義域;

(3)若函數(shù)fx)與gx)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為F1 , F2 , 離心率為 ,短軸上的兩個(gè)頂點(diǎn)為A,B(A在B的上方),且四邊形AF1BF2的面積為8.
(1)求橢圓C的方程;
(2)設(shè)動(dòng)直線y=kx+4與橢圓C交于不同的兩點(diǎn)M,N,直線y=1與直線BM交于點(diǎn)G,求證:A,G,N三點(diǎn)共線.

查看答案和解析>>

同步練習(xí)冊答案