計(jì)算機(jī)畢業(yè)考試分為理論與操作兩部分,每部分考試成績(jī)只記“合格”與“不合格”,只有當(dāng)兩部分考試都“合格”者,才頒發(fā)計(jì)算機(jī)“合格證書(shū)”.甲、乙兩人在理論考試中“合格”的概率依次為,在操作考試中“合格”的概率依次為,所有考試是否合格,相互之間沒(méi)有影響.則甲、乙進(jìn)行理論與操作兩項(xiàng)考試后,恰有1人獲得“合格證書(shū)”的概率       

試題分析:甲合格的概率為,乙合格的概率是,兩人中恰有1人合格的概率是
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某射手進(jìn)行射擊訓(xùn)練,假設(shè)每次射擊擊中目標(biāo)的概率為,且每次射擊的結(jié)果互不影響,已知射手射擊了5
次,求:
(1)其中只在第一、三、五次擊中目標(biāo)的概率;
(2)其中恰有3次擊中目標(biāo)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某種家用電器每臺(tái)的銷售利潤(rùn)與該電器的無(wú)故障使用時(shí)間有關(guān),每臺(tái)這種家用電器若無(wú)故障使用時(shí)間不超過(guò)一年,則銷售利潤(rùn)為0元,若無(wú)故障使用時(shí)間超過(guò)一年不超過(guò)三年,則銷售利潤(rùn)為100元;若無(wú)故障使用時(shí)間超過(guò)三年,則銷售利潤(rùn)為200元。已知每臺(tái)該種電器的無(wú)故障使用時(shí)間不超過(guò)一年的概率為無(wú)故障使用時(shí)間超過(guò)一年不超過(guò)三年的概率為
(I)求銷售兩臺(tái)這種家用電器的銷售利潤(rùn)總和為400元的概率;
(II)求銷售三臺(tái)這種家用電器的銷售利潤(rùn)總和為300元的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

阿亮與阿敏相約在19時(shí)至20之間在某肯德基店見(jiàn)面,早到者到達(dá)后應(yīng)等20分鐘方可離去,假設(shè)兩人到達(dá)的時(shí)刻是互不影響的,且在19時(shí)至20之間的任何時(shí)刻到達(dá)相約地點(diǎn)都是等可能的,問(wèn)他們兩人見(jiàn)面的可能性有多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將三顆骰子各擲一次,設(shè)事件A=“三個(gè)點(diǎn)數(shù)都不同”,B=“至少出現(xiàn)一個(gè)3點(diǎn)”,則條件概率P(A|B),P(B|A)分別是( 。
A.
60
91
,
1
2
B.
1
2
60
91
C.
5
18
,
60
91
D.
91
216
,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

同時(shí)拋兩枚硬幣,則一枚朝上一枚朝下的事件發(fā)生的概率是(  )
A.1/2B.1/3C.1/4D.2/3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一袋中有6個(gè)黑球,4個(gè)白球.
(1)依次取出3個(gè)球,不放回,已知第一次取出的是白球,求第三次取到黑球的概率;
(2)有放回地依次取出3球,已知第一次取的是白球,求第三次取到黑球的概率;
(3)有放回地依次取出3球,求取到白球個(gè)數(shù)X的分布列、期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

2011.年廣州亞運(yùn)會(huì)的一組志愿者全部通曉中文,并且每個(gè)志愿者還都通曉英語(yǔ)、日語(yǔ)和韓語(yǔ)中的一種(但無(wú)人通曉兩種外語(yǔ)).已知從中任抽一人,其通曉中文和英語(yǔ)的概率為,通曉中文和日語(yǔ)的概率為.若通曉中文和韓語(yǔ)的人數(shù)不超過(guò)3人.
(I )求這組志愿者的人數(shù);
(II)現(xiàn)從這組志愿者中選出通曉英語(yǔ)的志愿者1名,通曉韓語(yǔ)的志愿者1名,若甲通曉英語(yǔ),乙通曉韓語(yǔ),求甲和乙不全被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

有一道數(shù)學(xué)難題,在半小時(shí)內(nèi)甲能解決的概率是,乙能解決的概率為,兩人試圖獨(dú)立地在半小時(shí)解決,則兩人都未解決的概率為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案