【題目】要得到函數(shù)y=cos(2x﹣ )的圖象,只需將函數(shù)y=sin2x的圖象(
A.向左平移 個單位
B.向左平移 個單位
C.向右平移 個單位
D.向右平移 個單位

【答案】B
【解析】解:∵y=cos(2x﹣ )=cos( ﹣2x)=sin(2x+ )=sin[2(x+ )],

∴將函數(shù)y=sin2x的圖象向左平移 個單位即可得到函數(shù)y=cos(2x﹣ )的圖象.

故選:B.

【考點精析】利用函數(shù)y=Asin(ωx+φ)的圖象變換對題目進行判斷即可得到答案,需要熟知圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(﹣∞,0)上單調(diào)遞減,若實數(shù)a滿足f(3|2a+1|)>f(﹣ ),則a的取值范圍是(
A.(﹣∞,﹣ )∪(﹣ ,+∞)
B.(﹣∞,﹣
C.(﹣ ,+∞)
D.(﹣ ,﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,
(1)若E為DD1的中點,證明:BD1∥面EAC
(2)求證:AC⊥平面BB1D1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,﹣ <φ< ,x∈R)的部分圖象如圖所示.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)將函數(shù)y=f(x)的圖象沿x軸方向向右平移 個單位長度,再把橫坐標縮短到原來的 (縱坐標不變),得到函數(shù)y=g(x)的圖象,當(dāng)x∈[﹣ , ]時,求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知直線l的斜率為k,它與拋物線y2=4x相交于A,B兩點,F(xiàn)為拋物線的焦點,若 ,則|k|=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一組數(shù)據(jù)x1 , x2 , x3 , x4 , x5的平均數(shù)是2,方差是 ,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2, 3x4﹣2,3x5﹣2的平均數(shù)和方差分別是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x+ ,g(x)=f2(x)﹣af(x)+2a有四個不同的零點x1 , x2 , x3 , x4 , 則[2﹣f(x1)][2﹣f(x2)][2﹣f(x3)][2﹣f(x4)]的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga ,g(x)=loga(x+2a)+loga(4a﹣x),其中a>0,且a≠1.
(1)求f(x)的定義域,并判斷f(x)的奇偶性;
(2)已知區(qū)間D=[2a+1,2a+ ]滿足3aD,設(shè)函數(shù)h(x)=f(x)+g(x),h(x)的定義域為D,若對任意x∈D,不等式|h(x)|≤2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點,焦點為 ,且離心率
(1)求橢圓的方程;
(2)求以點P(2,﹣1)為中點的弦所在的直線方程.

查看答案和解析>>

同步練習(xí)冊答案