當(dāng)a0a≠1,x0,y0,nN*,下列各式不恒等的是       

A.loganxlogax

B.logaxnloga

C.x

D.logaxnlogaynnlogaxlogay

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(a-3b+9)ln(x+3)+
1
2
x2
+(b-3)x.
(1)當(dāng)a>0且a≠1,f'(1)=0時(shí),試用含a的式子表示b,并討論f(x)的單調(diào)區(qū)間;
(2)若f'(x)有零點(diǎn),f'(3)≤
1
6
,且對(duì)函數(shù)定義域內(nèi)一切滿足|x|≥2的實(shí)數(shù)x有f'(x)≥0.
①求f(x)的表達(dá)式;
②當(dāng)x∈(-3,2)時(shí),求函數(shù)y=f(x)的圖象與函數(shù)y=f'(x)的圖象的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x),偶函數(shù)g(x)滿足f(x)+g(x)=ax(a>0且a≠1).
(1)求證:f(2x)=2f(x)g(x);
(2)設(shè)f(x)的反函數(shù)f-1(x),當(dāng)a=
2
-1
時(shí),比較f-1[g(x)]與-1的大小,證明你的結(jié)論;
(3)若a>1,n∈N*,且n≥2,比較f(n)與nf(1)的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=kax-a-x(a>0且a≠1,k∈R),f(x)是定義域?yàn)镽上的奇函數(shù).
(1)求k的值,并證明當(dāng)a>1時(shí),函數(shù)f(x)是R上的增函數(shù);
(2)已知f(1)=
3
2
,函數(shù)g(x)=a2x+a-2x-4f(x),x∈[1,2],求g(x)的值域;
(3)若a=4,試問是否存在正整數(shù)λ,使得f(2x)≥λ•f(x)對(duì)x∈[-
1
2
,
1
2
]
恒成立?若存在,請(qǐng)求出所有的正整數(shù)λ;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知奇函數(shù)f(x),偶函數(shù)g(x)滿足f(x)+g(x)=ax(a>0且a≠1).
(1)求證:f(2x)=2f(x)g(x);
(2)設(shè)f(x)的反函數(shù)f-1(x),當(dāng)a=
2
-1
時(shí),比較f-1[g(x)]與-1的大小,證明你的結(jié)論;
(3)若a>1,n∈N*,且n≥2,比較f(n)與nf(1)的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省揚(yáng)州大學(xué)附中高二(下)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=kax-a-x(a>0且a≠1,k∈R),f(x)是定義域?yàn)镽上的奇函數(shù).
(1)求k的值,并證明當(dāng)a>1時(shí),函數(shù)f(x)是R上的增函數(shù);
(2)已知,函數(shù)g(x)=a2x+a-2x-4f(x),x∈[1,2],求g(x)的值域;
(3)若a=4,試問是否存在正整數(shù)λ,使得f(2x)≥λ•f(x)對(duì)恒成立?若存在,請(qǐng)求出所有的正整數(shù)λ;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案