3.如圖,在△ABC中,∠BAC=60°,AB=2,AC=1,D是BC邊上一點(diǎn),且$\overrightarrow{CD}$=2$\overrightarrow{DB}$,則$\overrightarrow{AD}$•$\overrightarrow{BC}$ 的值為-2.

分析 把$\overrightarrow{AD}、\overrightarrow{BC}$用基向量$\overrightarrow{AB}、\overrightarrow{AC}$表示,展開(kāi)數(shù)量積得答案.

解答 解:如圖,
∵$\overrightarrow{AD}=\overrightarrow{AC}+\overrightarrow{CD}=\overrightarrow{AC}+\frac{2}{3}\overrightarrow{CB}$=$\overrightarrow{AC}+\frac{2}{3}(\overrightarrow{AB}-\overrightarrow{AC})=\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$,
$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$,
∴$\overrightarrow{AD}$•$\overrightarrow{BC}$=$(\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC})•(\overrightarrow{AC}-\overrightarrow{AB})$=$\frac{1}{3}{\overrightarrow{AC}}^{2}+\frac{1}{3}\overrightarrow{AB}•\overrightarrow{AC}-\frac{2}{3}{\overrightarrow{AB}}^{2}$
=$\frac{1}{3}×{1}^{2}+\frac{1}{3}×2×1×cos60°-\frac{2}{3}×{2}^{2}$=-2.
故答案為:-2.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查向量的加法與減法法則,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,橢圓C:x 2+3y 2=a2(a>0).
(Ⅰ) 求橢圓C的離心率;
(Ⅱ) 若a=$\sqrt{6}$,M,N是橢圓C上兩點(diǎn),且|MN|=2$\sqrt{3}$,求△MON面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.已知A=45°,cosB=$\frac{4}{5}$.
(1)求cosC的值;
(2)若BC=20,D為AB的中點(diǎn),求CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.點(diǎn)P在曲線$\frac{x^2}{2}-{y^2}$=1上,點(diǎn)Q在曲線x2+(y-3)2=4上,線段PQ的中點(diǎn)為M,O是坐標(biāo)原點(diǎn),則線段OM長(zhǎng)的最小值是$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)y=lg(x2-3x+m)的定義域?yàn)镽,則實(shí)數(shù)m的取值范圍是($\frac{9}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{-|lnx|,x>0}\\{{x}^{2}+2x-1,x≤0}\end{array}\right.$,若f(a)=f(b)=f(c)=f(d),其中a,b,c,d互不相等,則對(duì)于命題p:abcd∈(0,1)和命題q:a+b+c+d∈[e+e-1-2,e2+e-2-2)真假的判斷,正確的是(  )
A.p假q真B.p假q假C.p真q真D.p真q假

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓C的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線與x軸所成的夾角為30°,且雙曲線的焦距為4$\sqrt{2}$.
(1)求橢圓C的方程;
(2)設(shè)F1,F(xiàn)2分別為橢圓C的左,右焦點(diǎn),過(guò)F2作直線l(與x軸不重合)交于橢圓于A,B兩點(diǎn),線段AB的中點(diǎn)為E,記直線F1E的斜率為k,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)集合A={x|(x+4)(x-4)>0},B={x|-2<x≤6},則A∩B等于( 。
A.(-2,4)B.(4,-2)C.(-4,6)D.(4,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合A={x|y=log2(x-1)},集合B={x|(x+1)(x-2)≤0},則A∪B=( 。
A.[-1,+∞)B.(1,2]C.(1,+∞)D.[-1,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案