【題目】某商場在一部向下運行的手扶電梯終點的正上方豎直懸掛一幅廣告畫.如圖,該電梯的高AB為4米,它所占水平地面的長AC為8米.該廣告畫最高點E到地面的距離為10.5米,最低點D到地面的距離6.5米.假設(shè)某人的眼睛到腳底的距離MN為1.5米,他豎直站在此電梯上觀看DE的視角為θ.
(1)設(shè)此人到直線EC的距離為x米,試用x表示點M到地面的距離;
(2)此人到直線EC的距離為多少米時,視角θ最大?
【答案】(1);(2)此人到直線EC的距離為6米時,視角θ最大.
【解析】試題分析:
(1)延長交于,即為所求,只要求得即可,這在中可求;
(2)作于,則,求出這兩個角的正切值,由兩角差的正切公式求出,最后由基本不等式可求得最大值.
試題解析:
(1)作MG⊥CE交于點G,作NH⊥AC交于H,則CH=GM=x.
在Rt△BAC中,因為AB=4,AC=8,所以tan∠BCA=,
所以NH=CH·tan∠BCA=,
所以MH=MN+NH=.
(2)因為MH=GC,
所以DG=DC-GC=DC-MH=5-,
EG=EC-GC=EC-MH=9-.
在Rt△DGM中,tan∠DMG==,
在Rt△EGM中,tan∠EMG==,
所以tanθ=tan∠EMD=tan(∠EMG-∠DMG)
==
=
=(0<x≤8).
由x>0,得5x>0,>0,所以5x-28+≥2-28=32,
所以tanθ=≤.
當(dāng)且僅當(dāng)5x=,即x=6時取“=”,且6∈(0,8].
因為y=tanθ在區(qū)間(0,)上是單調(diào)增函數(shù),
所以當(dāng)x=6米時,tanθ取最大值,此時視角θ取最大值.
答:此人到直線EC的距離為6米時,視角θ最大.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線且.圓C與直線相切于點A,且點A的縱坐標(biāo)為,圓心C在直線上.
(1)求直線之間的距離;
(2)求圓C的標(biāo)準(zhǔn)方程;
(3)若直線經(jīng)過點且與圓C交于兩點,當(dāng)△CPQ的面積最大時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.
(I)請將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關(guān)系式;
(II)從兩家公司各隨機選取一名推銷員,對他們過去100天的銷售情況進(jìn)行統(tǒng)計,得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請回答下面問題:
某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請你利用所學(xué)的統(tǒng)計學(xué)知識為他作出選擇,并說明理由.
【答案】(I)見解析; (Ⅱ)見解析.
【解析】分析:(I)依題意可得甲公司一名推銷員的工資與銷售件數(shù)的關(guān)系是一次函數(shù)的關(guān)系式,而乙公司是分段函數(shù)的關(guān)系式,由此解得;(Ⅱ)分別根據(jù)條形圖求得甲、乙公司一名推銷員的日工資的分布列,從而可分別求得數(shù)學(xué)期望,進(jìn)而可得結(jié)論.
詳解:(I)由題意得,甲公司一名推銷員的日工資 (單位:元) 與銷售件數(shù)的關(guān)系式為: .
乙公司一名推銷員的日工資 (單位: 元) 與銷售件數(shù)的關(guān)系式為:
(Ⅱ)記甲公司一名推銷員的日工資為 (單位: 元),由條形圖可得的分布列為
122 | 124 | 126 | 128 | 130 | |
0.2 | 0.4 | 0.2 | 0.1 | 0.1 |
記乙公司一名推銷員的日工資為 (單位: 元),由條形圖可得的分布列為
120 | 128 | 144 | 160 | |
0.2 | 0.3 | 0.4 | 0.1 |
∴
∴僅從日均收入的角度考慮,我會選擇去乙公司.
點睛:求解離散型隨機變量的數(shù)學(xué)期望的一般步驟為:
第一步是“判斷取值”,即判斷隨機變量的所有可能取值,以及取每個值所表示的意義;
第二步是“探求概率”,即利用排列組合,枚舉法,概率公式,求出隨機變量取每個值時的概率;
第三步是“寫分布列”,即按規(guī)范形式寫出分布列,并注意用分布列的性質(zhì)檢驗所求的分布列或某事件的概率是否正確;
第四步是“求期望值”,一般利用離散型隨機變量的數(shù)學(xué)期望的定義求期望的值
【題型】解答題
【結(jié)束】
19
【題目】如圖,在四棱錐中,底面為菱形, 平面, , , , 分別是, 的中點.
(1)證明: ;
(2)設(shè)為線段上的動點,若線段長的最小值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年電子商務(wù)蓬勃發(fā)展, 年某網(wǎng)購平臺“雙”一天的銷售業(yè)績高達(dá)億元人民幣,平臺對每次成功交易都有針對商品和快遞是否滿意的評價系統(tǒng).從該評價系統(tǒng)中選出次成功交易,并對其評價進(jìn)行統(tǒng)計,網(wǎng)購者對商品的滿意率為,對快遞的滿意率為,其中對商品和快遞都滿意的交易為次.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有的把握認(rèn)為“網(wǎng)購者對商品滿意與對快遞滿意之間有關(guān)系”?
對快遞滿意 | 對快遞不滿意 | 合計 | |
對商品滿意 | |||
對商品不滿意 | |||
合計 |
(2)為進(jìn)一步提高購物者的滿意度,平臺按分層抽樣方法從中抽取次交易進(jìn)行問卷調(diào)查,詳細(xì)了解滿意與否的具體原因,并在這次交易中再隨機抽取次進(jìn)行電話回訪,聽取購物者意見.求電話回訪的次交易至少有一次對商品和快遞都滿意的概率.
附: (其中為樣本容量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐(如圖1)的平面展開圖(如圖2)中,四邊形為邊長為的正方形,△ABE和△BCF均為正三角形,在三棱錐中:
(I)證明:平面 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)若點在棱上,滿足, ,點在棱上,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線是中心在原點,焦點在軸上的雙曲線的右支,它的離心率剛好是其對應(yīng)雙曲線的實軸長,且一條漸近線方程是,線段是過曲線右焦點的一條弦,是弦的中點。
(1)求曲線的方程;
(2)求點到軸距離的最小值;
(3)若作出直線,使點在直線上的射影滿足.當(dāng)點在曲線上運動時,求的取值范圍.
(參考公式:若為雙曲線右支上的點,為右焦點,則.(為離心率))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln x+ax2-2x,(a∈R,a≠0)
(1)若函數(shù)f(x)的圖象在x=1處的切線與x軸平行,求f(x)的單調(diào)區(qū)間;
(2)若f(x)≤ax在x∈[,+∞)上恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P—ABCD的底面是邊長為a的棱形,PD⊥底面ABCD.
(1)證明:AC⊥平面PBD;
(2)若PD=AD,直線PB與平面ABCD所成的角為45°,四棱錐P—ABCD的體積為,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)是否存在實數(shù),使得等式 對于一切正整數(shù)都成立?若存在,求出,,的值并給出證明;若不存在,請說明理由.
(2)求證:對任意的,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com