已知f(x)=+,x∈(0,π).
(1)將f(x)表示成cosx的多項(xiàng)式;
(2)求f(x)的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:導(dǎo)學(xué)大課堂必修一數(shù)學(xué)蘇教版 蘇教版 題型:022
已知f(x)、g(x)都是定義域內(nèi)的非奇非偶函數(shù),而f(x)·g(x)是偶函數(shù),寫出滿足條件的一組函數(shù),f(x)=________;g(x)=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:海南省海南中學(xué)2011-2012學(xué)年高一上學(xué)期期中考試數(shù)學(xué)試題 題型:013
已知f(x)=則不等式x+(x+2)·f(x+2)≤5的解集是
{x|-2≤x≤}
{x|x<-2}
{x|x≤}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:陜西省寶雞市2010屆高三教學(xué)質(zhì)量檢測(cè)(二)數(shù)學(xué)理合試題 題型:013
已知f(x)=sinx,x∈R,g(x)的圖像與f(x)的圖像交于點(diǎn)(,0)對(duì)稱,則在區(qū)間(0,2π)上滿足f(x)≤g(x)的x的范圍是
[]
[]
[]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知f(x)=+a是奇函數(shù),求a的值及函數(shù)值域.
[分析] 本題是函數(shù)奇偶性與指數(shù)函數(shù)的結(jié)合,利用f(-x)=-f(x)恒成立,可求得a值.其值域可借助基本函數(shù)值域求得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三8月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.
(1)求f(x)的解析式;
(2)若過點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依題意
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)設(shè)切點(diǎn)為(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)
又切線過點(diǎn)A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
則g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.
∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2
畫出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,
所以m的取值范圍是(-6,2).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com