已知f(x)=,x∈(0,π).

(1)將f(x)表示成cosx的多項(xiàng)式;

(2)求f(x)的最小值.

答案:
解析:

  解:(1)f(x)==2coscos

 。絚os2x+cosx=2cos2x+cosx-1.

  (2)∵f(x)=2(cosx+)2,且-1≤cosx≤1,

  ∴當(dāng)cosx=時(shí),f(x)取得最小值


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:導(dǎo)學(xué)大課堂必修一數(shù)學(xué)蘇教版 蘇教版 題型:022

已知f(x)、g(x)都是定義域內(nèi)的非奇非偶函數(shù),而f(x)·g(x)是偶函數(shù),寫出滿足條件的一組函數(shù),f(x)=________;g(x)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:海南省海南中學(xué)2011-2012學(xué)年高一上學(xué)期期中考試數(shù)學(xué)試題 題型:013

已知f(x)=則不等式x+(x+2)·f(x+2)≤5的解集是

[  ]
A.

{x|-2≤x≤}

B.

{x|x<-2}

C.

{x|x≤}

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西省寶雞市2010屆高三教學(xué)質(zhì)量檢測(cè)(二)數(shù)學(xué)理合試題 題型:013

已知f(x)=sinx,x∈R,g(x)的圖像與f(x)的圖像交于點(diǎn)(,0)對(duì)稱,則在區(qū)間(0,2π)上滿足f(x)≤g(x)的x的范圍是

[  ]
A.

[]

B.

[]

C.

D.

[]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=+a是奇函數(shù),求a的值及函數(shù)值域.

[分析] 本題是函數(shù)奇偶性與指數(shù)函數(shù)的結(jié)合,利用f(-x)=-f(x)恒成立,可求得a值.其值域可借助基本函數(shù)值域求得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三8月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點(diǎn)為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過點(diǎn)A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案