已知a、b、m、n∈R,且a2+b2=P,m2+n2=Q(P≠Q(mào)),則am+bn的最大值為_________.

解析:由柯西不等式知(am+bn)2≤(a2+b2)(m2+n2)=PQ,

∴am+bn≤.

答案:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、m、n∈N+,{an}是首項為a,公差為b的等差數(shù)列;{bn}是首項為b,公比為a的等比數(shù)列,且滿足a1<b1<a2<b2<a3
(1)求a的值;
(2)數(shù)列{1+am}與數(shù)列{bn}的公共項,且公共項按原順序排列后構(gòu)成一個新數(shù)列{cn},求{cn}的前n項之和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、m、n、x、y均為正數(shù),且a≠b,若a、m、b、x成等差數(shù)列,a、n、b、y成等比數(shù)列,則有( 。
A、m>n,x>yB、m>n,x<yC、m<n,x<yD、m<n,x>y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•孝感模擬)已知a,b,m,n,x,y都是正實數(shù),且a<b,又知a,m,b,x成等差數(shù)列,a,n,b,y成等比數(shù)列,則有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•陜西)(不等式選做題) 
已知a,b,m,n均為正數(shù),且a+b=1,mn=2,則(am+bn)(bm+an)的最小值為
2
2

查看答案和解析>>

同步練習(xí)冊答案