如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點分別為F1,F(xiàn)2,短軸兩個端點分別為A,B,且四邊形F1AF2B是邊長為2 的正方形.
(1)求橢圓的方程;
(2)若C,D分別為長軸的左右端點,O為坐標原點,動點M滿足MD⊥CD,連接CM,交橢圓于點P,判斷
OM
OP
是否為定值,若是,求出該定值,若不是,請說明理由.
分析:(1)由于四邊形F1AF2B是邊長為2 的正方形,可得a=2,b=c,再利用a2=b2+c2即可解出b,c;
(2)判斷
OM
OP
是定值4.設M(2,m),P(s,t),C(-2,0).則直線CM的方程為:y=
m
4
(x+2)
,與橢圓方程聯(lián)立可得根與系數(shù)的關系,即可得出點M的坐標用m表示,再利用數(shù)量積運算即可得出
OM
OP
是定值.
解答:解:(1)∵四邊形F1AF2B是邊長為2 的正方形,∴a=2,b=c,
∵a2=b2+c2,∴b=c=
2

∴橢圓的方程為
x2
4
+
y2
2
=1

(2)判斷
OM
OP
是定值4.下面給出證明:
設M(2,m),P(s,t),C(-2,0).
則直線CM的方程為:y=
m
4
(x+2)
,聯(lián)立
y=
m
4
(x+2)
x2
4
+
y2
2
=1
,
化為(8+m2)x2+4m2x+4m2-32=0,
∵直線與橢圓有兩個交點,∴△=16m4-4(8+m2)(4m2-32)>0,化為1>0.
∴-2×s=
4m2-32
8+m2
,解得s=
16-2m2
8+m2

t=
8m
8+m2
.∴M(
16-2m2
8+m2
,
8m
8+m2
)

OM
OP
=(2,m)•(
16-2m2
8+m2
8m
8+m2
)
=
32-4m2
8+m2
+
8m2
8+m2
=4為定值.
點評:本題考查了橢圓的標準方程及其性質(zhì)、直線與橢圓相交問題轉(zhuǎn)化為方程聯(lián)立得到根與系數(shù)的關系、數(shù)量積運算等基礎知識與基本技能方法,屬于難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
過點C(
3
2
,
3
2
)
且離心率為
6
3
,A、B是長軸的左右兩頂點,P為橢圓上意一點(除A,B外),PD⊥x軸于D,若
PQ
QD
,λ∈(-1,0)

(1)試求橢圓的標準方程;
(2)P在C處時,若∠QAB=2∠PAB,試求過Q、A、D三點的圓的方程;
(3)若直線QB與AP交于點H,問是否存在λ,使得線段OH的長為定值,若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•汕頭一模)如圖.已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的長軸為AB,過點B的直線l與x軸垂直,橢圓的離心率e=
3
2
,F(xiàn)1為橢圓的左焦點且
AF1
F1B
=1.
(I)求橢圓的標準方程;
(II)設P是橢圓上異于A、B的任意一點,PH⊥x軸,H為垂足,延長HP到點Q使得HP=PQ.連接AQ并延長交直線l于點M,N為MB的中點,判定直線QN與以AB為直徑的圓O的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)如圖,已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
3
2
,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,B為橢圓的上頂點且△BF1F2的周長為4+2
3

(1)求橢圓的方程;
(2)是否存在這樣的直線使得直線l與橢圓交于M,N兩點,且橢圓右焦點F2恰為△BMN的垂心?若存在,求出直線l的方程;若不存在,請說明由..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•崇明縣二模)如圖,已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),M為橢圓上的一個動點,F(xiàn)1、F2分別為橢圓的左、右焦點,A、B分別為橢圓的一個長軸端點與短軸的端點.當MF2⊥F1F2時,原點O到直線MF1的距離為
1
3
|OF1|.
(1)求a,b滿足的關系式;
(2)當點M在橢圓上變化時,求證:∠F1MF2的最大值為
π
2

(3)設圓x2+y2=r2(0<r<b),G是圓上任意一點,過G作圓的切線交橢圓于Q1,Q2兩點,當OQ1⊥OQ2時,求r的值.(用b表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
過點(1,
2
2
)
,離心率為
2
2
,左、右焦點分別為F1、F2.點P為直線l:x+y=2上且不在x軸上的任意一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D,O為坐標原點.設直線PF1、PF2的斜率分別為k1、k2
(Ⅰ)證明:
1
k1
-
3
k2
=2
;
(Ⅱ)問直線l上是否存在點P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0?若存在,求出所有滿足條件的點P的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案