【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知直線(為參數(shù)),曲線(為參數(shù)),以原點為極點, 軸的正半軸為極軸建立坐標系.
(1)寫出直線的普通方程與曲線的極坐標方程;
(2)設直線與曲線交于, 兩點,求的面積.
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. 若命題都是真命題,則命題“”為真命題
B. 命題“”的否定是“,”
C. 命題:“若,則或”的否命題為“若,則或”
D. “”是“”的必要不充分條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面幾種推理是類比推理的( )
A. 兩條直線平行,同旁內角互補,如果和是兩條平行直線的同旁內角,則
B. 由平面三角形的性質,推測空間四邊形的性質
C. 某校高二級有20個班,1班有51位團員,2班有53位團員,3班有52位團員,由此可以推測各班都超過50位團員.
D. 一切偶數(shù)都能被2整除,是偶數(shù),所以能被2整除.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經(jīng)過橢圓的右頂點、下頂點和上頂點.
(1)求圓的標準方程;
(2)直線經(jīng)過點且與垂直,是直線上的動點,過點作圓的切線,切點分別為,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了實現(xiàn)1000萬元利潤的目標,準備制定一個激勵銷售人員的獎勵方案:在銷售利潤達到10萬元時,按銷售利潤進行獎勵,且獎勵金額y(單位:萬元)隨銷售利潤x(單位:萬元)的增加而增加,但獎金總數(shù)不超過5萬元,同時獎金不超過利潤的25%.現(xiàn)有三個獎勵模型:,,,其中哪個模型能符合公司的要求?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】判斷下列函數(shù)的奇偶性:
(1)f(x)=x+1;
(2)f(x)=x3+3x,x∈[-4,4);
(3)f(x)=|x-2|-|x+2|;
(4)f(x)=
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】研究鮭魚的科學家發(fā)現(xiàn)鮭魚的游速可以表示為函數(shù),單位是,其中x表示鮭魚的耗氧量的單位數(shù).
(1)當一條鮭魚的耗氧量是8100個單位時,它的游速是多少?
(2)計算一條鮭魚靜止時耗氧量的單位數(shù).
(3)若鮭魚A的游速大于鮭魚B的游速,問這兩條鮭魚誰的耗氧量較大?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為響應黨中央“扶貧攻堅”的號召,某單位指導一貧困村通過種植紫甘薯來提高經(jīng)濟收入.紫甘薯對環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗,隨著溫度的升高,其死亡株數(shù)成增長的趨勢.下表給出了2017年種植的一批試驗紫甘薯在溫度升高時6組死亡的株數(shù):
經(jīng)計算: , , , , , , ,其中分別為試驗數(shù)據(jù)中的溫度和死亡株數(shù), .
(1)若用線性回歸模型,求關于的回歸方程(結果精確到);
(2)若用非線性回歸模型求得關于的回歸方程為,且相關指數(shù)為.
(i)試與(1)中的回歸模型相比,用說明哪種模型的擬合效果更好;
(ii)用擬合效果好的模型預測溫度為時該批紫甘薯死亡株數(shù)(結果取整數(shù)).
附:對于一組數(shù)據(jù), ,……, ,其回歸直線的斜率和截距的最小二乘估計分別為: ;相關指數(shù)為: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的宣傳費和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中=,=
(Ⅰ)根據(jù)散點圖判斷,與,哪一個適宜作為年銷售量y關于年宣傳費x的回歸方程類型(給出判斷即可,不必說明理由);
(Ⅱ)根據(jù)(Ⅰ)的判斷結果及表中數(shù)據(jù),建立y關于x的回歸方程;
(III)已知這種產(chǎn)品的年利z與x,y的關系為,根據(jù)(Ⅱ)的結果回答下列問題:
(Ⅰ)當年宣傳費時,年銷售量及年利潤的預報值時多少?
(Ⅱ)當年宣傳費為何值時,年利潤的預報值最大?
附:對于一組數(shù)據(jù),,……,,其回歸線的斜率和截距的最小二乘估計分別為:
,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com