設(shè)命題p:方程
x2
2
+
y2
a
=1
表示焦點(diǎn)在y軸上的橢圓,命題q:關(guān)于x的不等式x2+2x+a>0的解集為R,若命題“p或q”是假命題,求a的取值范圍.
若p真則方程
x2
2
+
y2
a
=1
表示焦點(diǎn)在y軸上的橢圓⇒a>2;
若q真則關(guān)于x的不等式x2+2x+a>0的解集為R⇒△<0⇒4-4a<0⇒a>1.
又因?yàn)槊}“p或q”是假命題,所以p,q均為假命題,
因此有
a≤2
a≤1
⇒a≤1
故a的取值范圍是a≤1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知c>0,p:函數(shù)y=cx是R上的減函數(shù);q:當(dāng)x∈[
1
2
,2]
時(shí),函數(shù)f(x)=x+
1
x
c2-
5
2
c+3
恒成立.若p∧q為假命題且p∨q是真命題,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知p、q是兩個(gè)命題,若“¬(p∨q)”是真命題,則( 。
A.p、q都是真命題B.p、q都是假命題
C.p是假命題且q是真命題D.p是真命題且q是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知m∈R,設(shè)p:復(fù)數(shù)z1=(m-1)+(m+3)i(i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,q:復(fù)數(shù)z2=1+(m-2)i的模不超過(guò)
10

(1)當(dāng)p為真命題時(shí),求m的取值范圍;
(2)若命題“p且q”為假命題,“p或q”為真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知命題p:?x∈R,2x<3x;命題q:?x0∈R,x03<1下列命題中為真命題是(  )
A.p∧qB.?p∧qC.p∧?qD.?p∧?q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

己知命題p:方程
x2
m-4
+
y2
m-2
=1
表示焦點(diǎn)在y軸的雙曲線(xiàn);命題q:關(guān)于x的不等式x2-2x+m>0的解集是R;
若“p∧q”是假命題,“p∨q”是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知命題p:函數(shù)f(x)=sin2x的最小正周期為π;q:函數(shù)g(x)=cosx是奇函數(shù);則下列命題中為真命題的是( 。
A.p∨qB.p∧qC.¬pD.(¬p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

命題p:已知“a-1<x<a+1:”是“x2-6x<0”的充分不必要條件;命題q:?x∈(-1,+∞),x+
4
x+1
>a恒成立.如果p為真命題,命題p且q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,則“”是“”的(     ).
A.充分不必要條件 B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案