以圓錐曲線的焦點弦AB為直徑作圓,與相應準線有兩個不同的交點,求證:

①這圓錐曲線一定是雙曲線;
②對于同一雙曲線, 截得圓弧的度數(shù)為定值.
①如圖:,

 所以圓錐曲線為雙曲線.
為定值
所以弧ST的度數(shù)為定值.
同答案
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知動點的軌跡是曲線,滿足點到點的距離與它到直線的距離之比為常數(shù),又點在曲線上.
(1)求曲線的方程;
(2)已知直線與曲線交于不同的兩點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓+=1(m>n>0)和雙曲線=1(a>b>0)有相同的焦點F1F2,P是兩條曲線的一個交點,則|PF1|·|PF2|的值是
A.maB.(ma)
C.m2a2D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線的兩條漸進線過坐標原點,且與以點為圓心,為半徑的圓相且,雙曲線的一個頂點與點關于直線對稱,設直線過點,斜率為。
(Ⅰ)求雙曲線的方程;
(Ⅱ)當時,若雙曲線的上支上有且只有一個點到直線的距離為,求斜率的值和相應的點的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

點P(8,1)平分雙曲線x2-4y2=4的一條弦,則這條弦所在的直線方程是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題


查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線的一條漸近線方程為,則該雙曲線的離心率             

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是雙曲線的兩個焦點,點P在雙曲線上且滿足,
 ————

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若實數(shù)、滿足條件,則的取值范圍是___________________.

查看答案和解析>>

同步練習冊答案