若第一象限內有一動點Q(x,y)在過點A(2,3)且斜率為-2的直線m上運動,則log2x+log2y最大值為
 
考點:對數(shù)的運算性質,基本不等式
專題:函數(shù)的性質及應用
分析:直線m的方程為:y-3=-2(x-2),化為2x+y-7=0,(x,y>0).利用對數(shù)的運算法則、基本不等式的性質可得log2x+log2y=log2(xy)=log2(
1
2
•2xy)
≤log2[
1
2
•(
2x+y
2
)2]
即可得出.
解答: 解:直線m的方程為:y-3=-2(x-2),化為2x+y-7=0,(x,y>0).
∴l(xiāng)og2x+log2y=log2(xy)=log2(
1
2
•2xy)
≤log2[
1
2
•(
2x+y
2
)2]
=log2(
1
2
×(
7
2
)2)
=-1+2log2
7
2
=2log27-3.當且僅當y=2x=
7
2
時取等號.
∴l(xiāng)og2x+log2y最大值為2log27-3.
故答案為:2log27-3.
點評:本題考查了對數(shù)的運算法則、基本不等式的性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某水泥廠甲、乙兩個車間包裝水泥,在自動包裝傳送帶上每隔30分鐘抽取一包產品,稱其重量,分別記錄抽查數(shù)據(jù)如下:
甲:102,101,99,98,103,98,99
乙:110,115,90,85,75,115,110
(Ⅰ)畫出這兩組數(shù)據(jù)的莖葉圖;
(Ⅱ)求出這兩組數(shù)據(jù)的平均值和方差(用分數(shù)表示);并說明哪個車間的產品較穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinθ+cosθ=-
3
17
,則sinθ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x+y=1,則sinx+siny與1的大小關系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(m,
1-m
2
),
b
=(-2,-2),那么向量
a
-
b
的模取最小值時,實數(shù)m的取值與最小值分別是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知lglglg(x-1)=0,求x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(3,-2),B(-2,1),C(7,-4),D(10,12),若
AD
AB
AC
,則λ,μ的值分別為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足:
①函數(shù)y=f(x-1)的圖象關于點(1,0)對稱;
②對?x∈R,f(
3
4
-x)=f(
3
4
+x)成立;
③當x∈(-
3
2
,-
3
4
]時,f(x)=log2(-3x+1).
則f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{
an
n
}
的前n項和為Sn,且滿足a1=1,an=an-1+n,(n≥2),則Sn等于( 。
A、
n(n+3)
2
B、
n(n+3)
4
C、
n(n+1)
2
D、
n(n+1)
4

查看答案和解析>>

同步練習冊答案