【題目】已知集合M是滿足下列性質(zhì)的函數(shù)的全體;在定義域內(nèi)存在實(shí)數(shù)t,使得.
(1)判斷是否屬于集合M,并說明理由;
(2)若屬于集合M,求實(shí)數(shù)a的取值范圍;
(3)若,求證:對(duì)任意實(shí)數(shù)b,都有.
【答案】(1)不屬于,理由詳見解析;(2);(3)詳見解析.
【解析】
(1)利用f(x)=3x+2,通過f(t+2)=f(t)+f(2)推出方程無解,說明f(x)=3x+2不屬于集合M;
(2)由屬于集合M,推出有實(shí)解,即(a﹣6)x2+4ax+6(a﹣2)=0有實(shí)解,對(duì)參數(shù)分類討論,利用判斷式求解即可;
(3)當(dāng)f(x)=2x+bx2時(shí),方程f(x+2)=f(x)+f(2)3×2x+4bx﹣4=0,令g(x)=3×2x+4bx﹣4,則g(x)在R上的圖象是連續(xù)的,當(dāng)b≥0時(shí),當(dāng)b<0時(shí),判斷函數(shù)是否有零點(diǎn),證明對(duì)任意實(shí)數(shù)b,都有f(x)∈M.
解:(1)當(dāng)時(shí),方程
此方程無解,所以不存在實(shí)數(shù)t,使得,
故不屬于集合M﹒
(2)由,屬于集合M,可得
方程有實(shí)解
有實(shí)解有實(shí)解,
若時(shí),上述方程有實(shí)解;
若時(shí),有,解得,
故所求a的取值范圍是.
(3)當(dāng)時(shí),方程
,
令,則在上的圖像是連續(xù)的,
當(dāng)時(shí),,,故在內(nèi)至少有一個(gè)零點(diǎn)
當(dāng)時(shí),,,故在內(nèi)至少有一個(gè)零點(diǎn)
故對(duì)任意的實(shí)數(shù)b,在上都有零點(diǎn),即方程總有解,
所以對(duì)任意實(shí)數(shù)b,都有.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1) 證明:PB∥平面AEC
(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)的圖象與軸無交點(diǎn),求的取值范圍;
(2)若函數(shù)在上存在零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】垃圾種類可分為可回收垃圾、干垃圾、濕垃圾、有害垃圾等,為調(diào)查中學(xué)生對(duì)垃圾分類的了解程度,某調(diào)查小組隨機(jī)從本市一中高一的名學(xué)生(其中女生人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查,已知抽取的名學(xué)生中有男生人、
(1)求值及抽到的女生人數(shù);
(2)調(diào)查小組請(qǐng)這名學(xué)生指出生活中若干項(xiàng)常見垃圾的種類,把能準(zhǔn)確分類不少于項(xiàng)的稱為“比較了解”,少于三項(xiàng)的稱為“不太了解”,調(diào)查結(jié)果如下:
0項(xiàng) | 1項(xiàng) | 2項(xiàng) | 3項(xiàng) | 4項(xiàng) | 5項(xiàng) | 5項(xiàng)以上 | |
男生(人) | 4 | 22 | 34 | 18 | 16 | 10 | 6 |
女生(人) | 0 | 15 | 20+m | 20 | 16 | 9 | m |
求值,完成如下列聯(lián)表,并判斷是否有的把握認(rèn)為學(xué)生對(duì)垃圾分類的了解程度與性別有關(guān)?
不太了解 | 比較了解 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
(3)在(2)條件下,從抽取的“比較了解”的學(xué)生中仍采用分層抽樣的方法抽取名.再從這名學(xué)生中隨機(jī)抽取人作義務(wù)講解員,求抽取的人中至少一名女生的概率.
參考數(shù)據(jù):
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由個(gè)不同的數(shù)構(gòu)成的數(shù)列中,若時(shí),(即后面的項(xiàng)小于前面項(xiàng)),則稱與構(gòu)成一個(gè)逆序,一個(gè)有窮數(shù)列的全部逆序的總數(shù)稱為該數(shù)列的逆序數(shù).如對(duì)于數(shù)列3,2,1,由于在第一項(xiàng)3后面比3小的項(xiàng)有2個(gè),在第二項(xiàng)2后面比2小的項(xiàng)有1個(gè),在第三項(xiàng)1后面比1小的項(xiàng)沒有,因此,數(shù)列3,2,1的逆序數(shù)為;同理,等比數(shù)列的逆序數(shù)為.
(1)計(jì)算數(shù)列的逆序數(shù);
(2)計(jì)算數(shù)列()的逆序數(shù);
(3) 已知數(shù)列的逆序數(shù)為,求的逆序數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有行數(shù)表如下:
第一行:
第二行:
第三行:
…… …… ……
第行:
第m行:
按照上述方式從第一行寫到第m行(寫下的第n個(gè)數(shù)記作)得到有窮數(shù)列,其前n項(xiàng)和為,若存在,則的最小值為______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右頂點(diǎn)、上頂點(diǎn)分別為A、B,坐標(biāo)原點(diǎn)到直線AB的距離為,且.
(1)求橢圓C的方程;
(2)過橢圓C的左焦點(diǎn)的直線交橢圓于M、N兩點(diǎn),且該橢圓上存在點(diǎn)P,使得四邊形MONP(圖形上字母按此順序排列)恰好為平行四邊形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“砸金蛋”(游玩者每次砸碎一顆金蛋,如果有獎(jiǎng)品,則“中獎(jiǎng)”)是現(xiàn)在商家一種常見促銷手段.今年“雙十一”期間,甲、乙、丙、丁四位顧客在商場購物時(shí),每人均獲得砸一顆金蛋的機(jī)會(huì).游戲開始前,甲、乙、丙、丁四位顧客對(duì)游戲中獎(jiǎng)結(jié)果進(jìn)行了預(yù)測,預(yù)測結(jié)果如下:
甲說:“我或乙能中獎(jiǎng)”;
乙說:“丁能中獎(jiǎng)”;
丙說:“我或乙能中獎(jiǎng)”;
丁說:“甲不能中獎(jiǎng)”.
游戲結(jié)束后,這四位同學(xué)中只有一位同學(xué)中獎(jiǎng),且只有一位同學(xué)的預(yù)測結(jié)果是正確的,則中獎(jiǎng)的同學(xué)是( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)直線與軸的交點(diǎn)為,經(jīng)過點(diǎn)的直線與曲線交于兩點(diǎn),若,求直線的傾斜角.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com