(理)球O與銳二面角α-l-β的兩半平面相切,兩切點(diǎn)間的距離為,O點(diǎn)到交線l的距離為2,則球O的表面積為( )
A. | B.4π | C.12π | D.36π |
B
解析試題分析:設(shè)球O與平面α,β分別切于點(diǎn)P,Q,過點(diǎn)O作ORl于低能R,連接PR,QR,PQ,設(shè)PQ與OR相交于點(diǎn)S,其抽象圖如下圖所示,則有POPR,OQQR,故P,O,Q,R四點(diǎn)共圓,此圓的直徑為2,由正弦定理得,又二面角α-l-β為銳二面角,所以
即球的半徑為1,球O的表面積為S=,故選B.
考點(diǎn):本試題主要是考查了球的表面積的求解。
點(diǎn)評(píng):解決該試題的關(guān)鍵是從空間幾何體中抽象出要解決的四面體,然后通過解三角形和二面角得到結(jié)論,屬于中等難度試題,考查了空間的想象能力。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖是某幾何體的三視圖,其中正視圖是腰長(zhǎng)為2的等腰三角形,俯視圖是半徑為1的半圓,則該幾何體的體積是( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
利用斜二測(cè)畫法可以得到:
①三角形的直觀圖是三角形;②平行四邊形的直觀圖是平行四邊形;
③正方形的直觀圖是正方形;④菱形的直觀圖是菱形. 以上結(jié)論正確的是( )
A.①② | B.① | C.③④ | D.①②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
過空間任意一點(diǎn)引三條不共面的直線,它們所確定的平面?zhèn)數(shù)是( )
A.1 | B.2 | C.3 | D.1或3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
某幾何體的三視圖如圖所示,圖中的四邊形都是邊長(zhǎng)為的正方形,兩條虛線互相垂直,則該幾何體的體積是( 。
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com