【題目】已知平面內(nèi)動(dòng)點(diǎn)到兩定點(diǎn)和的距離之和為4.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)已知直線(xiàn)和的傾斜角均為,直線(xiàn)過(guò)坐標(biāo)原點(diǎn)且與曲線(xiàn)相交于, 兩點(diǎn),直線(xiàn)過(guò)點(diǎn)且與曲線(xiàn)是交于, 兩點(diǎn),求證:對(duì)任意, .
【答案】(Ⅰ) (Ⅱ)見(jiàn)解析
【解析】試題分析:(Ⅰ)由橢圓定義可得動(dòng)點(diǎn)的軌跡E是以定點(diǎn)和為焦點(diǎn)的橢圓,且,從而得方程;
(Ⅱ)由題設(shè)可設(shè)直線(xiàn)的參數(shù)方程分別為; ,將直線(xiàn)的參數(shù)方程分別和橢圓聯(lián)立后整理得: ; ,由和,從而由韋達(dá)定理求解即可.
試題解析:
(Ⅰ)解: 則根據(jù)橢圓的定義得:動(dòng)點(diǎn)的軌跡E是以定點(diǎn)和為焦點(diǎn)的橢圓,且,
,
可得動(dòng)點(diǎn)M的軌跡的方程為.
(Ⅱ)證明:由題設(shè)可設(shè)直線(xiàn)的參數(shù)方程分別為
; .
將直線(xiàn)的參數(shù)方程分別和橢圓聯(lián)立后整理得:
; .
則由參數(shù)t的幾何意義、根與系數(shù)的關(guān)系及橢圓的對(duì)稱(chēng)性有:
;
,
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB⊥AC,若AD⊥BC,則AB2=BD·BC;類(lèi)似地有命題:在三棱錐A-BCD中,AD⊥平面ABC,若A點(diǎn)在平面BCD內(nèi)的射影為M,則有S=S△BCM·S△BCD.上述命題是 ( )
A. 真命題
B. 增加條件“AB⊥AC”才是真命題
C. 增加條件“M為△BCD的垂心”才是真命題
D. 增加條件“三棱錐A-BCD是正三棱錐”才是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知分別是雙曲線(xiàn)的左、右焦點(diǎn),過(guò)點(diǎn)作垂直與軸的直線(xiàn)交雙曲線(xiàn)于,兩點(diǎn),若為銳角三角形,則雙曲線(xiàn)的離心率的取值范圍是_______.
【答案】
【解析】
根據(jù)雙曲線(xiàn)的通徑求得點(diǎn)的坐標(biāo),將三角形為銳角三角形,轉(zhuǎn)化為,即,將表達(dá)式轉(zhuǎn)化為含有離心率的不等式,解不等式求得離心率的取值范圍.
根據(jù)雙曲線(xiàn)的通徑可知,由于三角形為銳角三角形,結(jié)合雙曲線(xiàn)的對(duì)稱(chēng)性可知,故,即,即,解得,故離心率的取值范圍是.
【點(diǎn)睛】
本小題主要考查雙曲線(xiàn)的離心率的取值范圍的求法,考查雙曲線(xiàn)的通徑,考查雙曲線(xiàn)的對(duì)稱(chēng)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.本小題的主要突破口在將三角形為銳角三角形,轉(zhuǎn)化為,利用列不等式,再將不等式轉(zhuǎn)化為只含離心率的表達(dá)式,解不等式求得雙曲線(xiàn)離心率的取值范圍.
【題型】填空題
【結(jié)束】
17
【題目】已知命題:方程有兩個(gè)不相等的實(shí)數(shù)根;命題:不等式的解集為.若或為真,為假,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正四棱錐中,為底面正方形的中心,側(cè)棱與底面所成的角的正切值為.
(1)求側(cè)面與底面所成的二面角的大;
(2)若是的中點(diǎn),求異面直線(xiàn)與所成角的正切值;
(3)問(wèn)在棱上是否存在一點(diǎn),使⊥側(cè)面,若存在,試確定點(diǎn)的位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為.
(Ⅰ)求曲線(xiàn)的直角坐標(biāo)方程和直線(xiàn)的普通方程;
(Ⅱ)若直線(xiàn)與曲線(xiàn)相交于, 兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究與發(fā)現(xiàn):為什么二次函數(shù)的圖象是拋物線(xiàn)?我們知道,平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線(xiàn)l距離相等的點(diǎn)的軌跡是拋物線(xiàn),這是拋物線(xiàn)的定義,也是其本質(zhì)特征因此,只要說(shuō)明二次函數(shù)的圖象符合拋物線(xiàn)的本質(zhì)特征,就解決了為什么二次函數(shù)的圖象是拋物線(xiàn)的問(wèn)題進(jìn)一步講,由拋物線(xiàn)與其方程之間的關(guān)系可知,如果能用適當(dāng)?shù)姆绞綄?/span>轉(zhuǎn)化為拋物線(xiàn)標(biāo)準(zhǔn)方程的形式,那么就可以判定二次函數(shù)的圖象是拋物線(xiàn)了.下面我們就按照這個(gè)思路來(lái)展開(kāi).對(duì)二次函數(shù)式的右邊配方,得.由函數(shù)圖象平移一般地,設(shè)是坐標(biāo)平面內(nèi)的一個(gè)圖形,將上所有點(diǎn)按照同一方向,移動(dòng)同樣的長(zhǎng)度,得到圖形,這一過(guò)程叫作圖形的平移的知識(shí)可以知道,沿向量平移函數(shù)的圖象如圖,函數(shù)圖象的形狀、大小不發(fā)生任何變化,平移后圖象對(duì)應(yīng)的函數(shù)解析式為,我們把它改寫(xiě)為的形式方程,這是頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)為的拋物線(xiàn).這樣就說(shuō)明了二次函數(shù)的圖象是一條拋物線(xiàn).
請(qǐng)根據(jù)以上閱讀材料,回答下列問(wèn)題:
由函數(shù)的圖象沿向量平移,得到的圖象對(duì)應(yīng)的函數(shù)解析式為,求的坐標(biāo);
過(guò)拋物線(xiàn)的焦點(diǎn)F的一條直線(xiàn)交拋物線(xiàn)于P、Q兩點(diǎn)若線(xiàn)段PF與QF的長(zhǎng)分別是p、q,試探究是否為定值?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某市主辦的科技知識(shí)競(jìng)賽的學(xué)生成績(jī)中隨機(jī)選取了40名學(xué)生的成績(jī)作為樣本,已知這些成績(jī)?nèi)吭?0分至100分之間,現(xiàn)將成績(jī)按如下方式分成6組:第一組;第二組;;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.
求成績(jī)?cè)趨^(qū)間內(nèi)的學(xué)生人數(shù);
估計(jì)這40名學(xué)生成績(jī)的眾數(shù)和中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)垂直.
(1)求的值;
(2)若對(duì)于任意的恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{}是等差數(shù)列,數(shù)列{}的前項(xiàng)和滿(mǎn)足,,且
(1)求數(shù)列{}和{}的通項(xiàng)公式:
(2)設(shè)為數(shù)列{.}的前項(xiàng)和,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com