在△ABC中,a﹑b﹑c分別為三個(gè)內(nèi)角A﹑B﹑C的對邊,

(Ⅰ)判斷△ABC的形狀;  (Ⅱ)若︱=2,求得取值范圍。

 

 

 

 

【答案】

 解:(Ⅰ) 等腰三角形!4分

(Ⅱ),提示:∵

又由(Ⅰ)知a=c  ∴,∴cosB=-cos2C, ∵.∴………--------……10分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a+b=10,cosC是方程2x2-3x-2=0的一個(gè)根,求△ABC周長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=b+2,b=c+2,又最大角的正弦等于
3
2
,則三邊長為
3,5,7
3,5,7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a+b=10,cosC是方程2x2-3x-2=0的一個(gè)根,
求①角C的度數(shù),
②△ABC周長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,“A=B”是“cosA=cosB”的
充要條件
充要條件
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的是
(1)(3)
(1)(3)
(只須填寫命題的序號(hào)即可)
(1)函數(shù)y=
π
2
-arccosx
是奇函數(shù);
(2)在△ABC中,A+B<
π
2
是sinA<cosB的充要條件;
(3)當(dāng)α∈(0,π)時(shí),cosα+sinα=m(0<m<1),則α一定是鈍角,且|tanα|>1;
(4)要得到函數(shù)y=cos(
x
2
-
π
4
)的圖象,只需將y=sin
x
2
的圖象向左平移
π
2
個(gè)單位.

查看答案和解析>>

同步練習(xí)冊答案