已知實數(shù)a>0,則表示

[  ]
A.

以a為半徑的球的體積的一半

B.

以a為半徑的球面面積的一半

C.

以a為半徑的圓的面積的一半

D.

由函數(shù)y=a2-x2,坐標軸及x=a所圍成的圖形的面積

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為[-2,+∞),部分對應(yīng)值如下表.f′(x)為f(x)的導(dǎo)函數(shù),函數(shù)y=f′(x)的圖象如圖所示.若實數(shù)a滿足f(2a+1)<1,則a的取值范圍是(  )
x -2 0 4
f(x) 1 -1 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為(0,+∞),若y=
f(x)
x
在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”;若y=
f(x)
x2
在(0,+∞)上為增函數(shù),則稱f(x)為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為Ω1,所有“二階比增函數(shù)”組成的集合記為Ω2
(Ⅰ)已知函數(shù)f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求實數(shù)h的取值范圍;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函數(shù)值由下表給出,
x a b c a+b+c
f(x) d d t 4
求證:d(2d+t-4)>0;
(Ⅲ)定義集合Φ={f(x)|f(x)∈Ω2,且存在常數(shù)k,使得任取x∈(0,+∞),f(x)<k},請問:是否存在常數(shù)M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為[-2,+∞),部分函數(shù)值如下表,f'(x)為f(x)的導(dǎo)函數(shù),f'(x)的圖象如圖所示.如果實數(shù)a滿足f(a)<1,則a的取值范圍是(  )
x -2 0 4
 f(x) 1 -1 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南模擬)已知函數(shù)f(x)的定義域為[-1,5],部分對應(yīng)值如下表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.
x -1 0 2 4 5
y 1 2 0 2 1
(1)f(x)的極小值為
0
0
;
(2)若函數(shù)y=f(x)-a有4個零點,則實數(shù)a的取值范圍為
[1,2)
[1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中的真命題為
(2)(3)(4)(5)
(2)(3)(4)(5)

(1)復(fù)平面中滿足|z-2|-|z+2|=1的復(fù)數(shù)z的軌跡是雙曲線;
(2)當(dāng)a在實數(shù)集R中變化時,復(fù)數(shù)z=a2+ai在復(fù)平面中的軌跡是一條拋物線;
(3)已知函數(shù)y=f(x),x∈R+和數(shù)列an=f(n),n∈N,則“數(shù)列an=f(n),n∈N遞增”是“函數(shù)y=f(x),x∈R+遞增”的必要非充分條件;
(4)在平面直角坐標系xoy中,將方程g(x,y)=0對應(yīng)曲線按向量(1,2)平移,得到的新曲線的方程為g(x-1,y-2)=0;
(5)設(shè)平面直角坐標系xoy中方程F(x,y)=0表橢圓示一個,則總存在實常數(shù)p、q,使得方程F(px,qy)=0表示一個圓.

查看答案和解析>>

同步練習(xí)冊答案