設(shè)函數(shù).
(1)若函數(shù)在區(qū)間(-2,0)內(nèi)恰有兩個零點(diǎn),求a的取值范圍;
(2)當(dāng)a=1時,求函數(shù)在區(qū)間[t,t+3]上的最大值.

(1)   (2)

解析試題分析:
(1)根據(jù)題意對函數(shù)求導(dǎo),獲得導(dǎo)函數(shù)的根與大于0小于0的解集,獲得函數(shù)的單調(diào)區(qū)間和極值點(diǎn),極值.進(jìn)而確定函數(shù)在區(qū)間上的單調(diào)性,再利用數(shù)形結(jié)合的思想與零點(diǎn)存在性定理的知識可以得到函數(shù)在上要有兩個零點(diǎn),需要滿足即可,解不等式即可求出的取值范圍.
(2)根據(jù)題意,則利用(1)可以得到的單調(diào)性以及極值點(diǎn),極值.要得到函數(shù)在含參數(shù)的區(qū)間上的最大值,我們需要討論的范圍得到函數(shù)的在區(qū)間上的單調(diào)性進(jìn)而得到在該區(qū)間上的最大值,為此分三種情況分別為,依次確定單調(diào)性得到最大值即可.
試題解析:
(1)∵
,                       (1分)
,解得                              (2分)
當(dāng)x變化時,,的變化情況如下表:









0

0



極大值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)若曲線在點(diǎn)處的切線平行于軸,求的值;
(2)當(dāng)時,若對,恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè),在(1)的條件下,證明當(dāng)時,對任意兩個不相等的正數(shù)、,有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,對一切正整數(shù),點(diǎn)都在函數(shù)的圖像上,且過點(diǎn)的切線的斜率為.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),等差數(shù)列的任一項(xiàng),其中中所有元素的最小數(shù),,求的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍;
(3)過坐標(biāo)原點(diǎn)作曲線的切線,證明:切點(diǎn)的橫坐標(biāo)為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)),其中
(1)若曲線在點(diǎn)處相交且有相同的切線,求的值;
(2)設(shè),若對于任意的,函數(shù)在區(qū)間上的值恒為負(fù)數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處取得極值2
(1)求函數(shù)的表達(dá)式;
(2)當(dāng)滿足什么條件時,函數(shù)在區(qū)間上單調(diào)遞增?
(3)若圖象上任意一點(diǎn),直線與的圖象相切于點(diǎn)P,求直線的斜率的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)當(dāng)時,求的最大值;
(2)求證:恒成立;
(3)求證:.(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(1)求函數(shù)的解析式;
(2)若對于任意,都有成立,求實(shí)數(shù)的取值范圍;
(3)設(shè),,且,求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=(x2+ax+b)ex(x∈R).
(1)若a=2,b=-2,求函數(shù)f(x)的極大值;
(2)若x=1是函數(shù)f(x)的一個極值點(diǎn).
①試用a表示b;
②設(shè)a>0,函數(shù)g(x)=(a2+14)ex+4.若?ξ1、ξ2∈[0,4],使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案