已知集合M={-1,1},N={x∈Z|
1
2
<2x+1<4},則M∩N=( 。
分析:將集合N中的不等式變形后,利用底數(shù)為2的指數(shù)函數(shù)為增函數(shù),列出關(guān)于x的不等式,求出不等式的解集得到x的范圍,找出x范圍中的整數(shù)解得到x的值,確定出集合N,找出集合M與集合N的公共元素,即可求出兩集合的交集.
解答:解:由集合N中的不等式
1
2
<2x+1<4,變形得:2-1<2x+1<22
由底數(shù)為2的指數(shù)函數(shù)為增函數(shù),得到-1<x+1<2,
解得:-2<x<1,又x∈Z,
∴集合N={-1,0},又集合M={-1,1},
則M∩N={-1}.
故選B
點(diǎn)評(píng):此題屬于以其他不等式的解法為平臺(tái),考查了交集及其運(yùn)算,是高考中?嫉幕绢}型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

1、已知集合M={1,2,3,5},集合N={3,4,5},則M∩N=
{3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={-1,1,3,5}和N={-1,1,2,4}.設(shè)關(guān)于x的二次函數(shù)f(x)=ax2-4bx+1(a,b∈R).
(Ⅰ)若b=1時(shí),從集合M取一個(gè)數(shù)作為a的值,求方程f(x)=0有解的概率;
(Ⅱ)若從集合M和N中各取一個(gè)數(shù)作為a和b的值,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={-1,0,1,2},從集合M中有放回地任取兩元素作為點(diǎn)P的坐標(biāo).
(1)寫出這個(gè)試驗(yàn)的所有基本事件,并求出基本事件的個(gè)數(shù);
(2)求點(diǎn)P落在坐標(biāo)軸上的概率;
(3)求點(diǎn)P落在圓x2+y2=4內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•邯鄲二模)已知集合M⊆{1,2,3,4},且M∩{1,2}={1,2},則集合M的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={-1,1},N={x|
1
4
2x-1<2,x∈Z}
,則M∩N=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案