已知直線l1:4x-3y+11=0和直線l2:x+1=0,拋物線y2=4x上一動點P到直線l1和直線l2的距離之和的最小值為( 。
A、2
B、3
C、
11
5
D、
37
16
考點:點到直線的距離公式
專題:直線與圓
分析:設(shè)出拋物線上一點P的坐標(biāo),然后利用點到直線的距離公式分別求出P到直線l1和直線l2的距離d1和d2,求出d1+d2,利用二次函數(shù)求最值的方法即可求出距離之和的最小值.
解答: 解:設(shè)拋物線上的一點P的坐標(biāo)為(a2,2a),
則P到直線l2:x+1=0的距離d2=a2+1;
P到直線l1:4x-3y+11=0的距離d1=
|4a2-6a+11|
5
,
則d1+d2=
|4a2-6a+11|
5
+a2+1=
9a2-6a+16
5
=
9(a-
1
3
)2+15
5

∴當(dāng)a=
1
3
時,P到直線l1和直線l2的距離之和的最小值為3.
故選:B.
點評:此題考查學(xué)生靈活運(yùn)用拋物線的簡單性質(zhì)解決實際問題,靈活運(yùn)用點到直線的距離公式化簡求值,是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

極點到直線ρ(cosθ-sinθ)=2的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3sin(20°+x)+5sin(x+80°)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以(-4,0),(4,0)為焦點,y=±
3
x為漸近線的雙曲線的方程為( 。
A、
x2
4
-
y2
12
=1
B、
x2
12
-
y2
4
=1
C、
x2
24
-
y2
8
=1
D、
x2
8
-
y2
24
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=-|x|(x∈[-2,2])的圖象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1,2,3,4,5,6這六個數(shù)中,不放回地任意取兩個數(shù),每次取一個數(shù),則所取的兩個數(shù)都是偶數(shù)的概率為( 。
A、
1
2
B、
1
3
C、
1
4
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意a∈[-1,1],函數(shù)f(x)=x2+(a-4)x+4-2a的值恒大于0,則x的范圍是( 。
A、x<1或x>2
B、1<x<2
C、x<1或x>3
D、1<x<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(1,2)在圓
x=-1+8cosθ
y=8sinθ
的(  )
A、內(nèi)部B、外部
C、圓上D、與θ的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一個質(zhì)點隨機(jī)投放在以A(1,1),B(5,1),C(1,4)為頂點的三角形內(nèi)(含邊界),若該質(zhì)點到此三角形的三個頂點的距離均不小于d的概率為1-
π
6
,則d=( 。
A、1
B、
2
C、2
D、4

查看答案和解析>>

同步練習(xí)冊答案